• 제목/요약/키워드: Generation of low temperature plasma

검색결과 46건 처리시간 0.032초

Current status of Atomic and Molecular Data for Low-Temperature Plasmas

  • Yoon, Jung-Sik;Song, Mi-Young;Kwon, Deuk-Chul
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.64-64
    • /
    • 2015
  • Control of plasma processing methodologies can only occur by obtaining a thorough understanding of the physical and chemical properties of plasmas. However, all plasma processes are currently used in the industry with an incomplete understanding of the coupled chemical and physical properties of the plasma involved. Thus, they are often 'non-predictive' and hence it is not possible to alter the manufacturing process without the risk of considerable product loss. Only a more comprehensive understanding of such processes will allow models of such plasmas to be constructed that in turn can be used to design the next generation of plasma reactors. Developing such models and gaining a detailed understanding of the physical and chemical mechanisms within plasma systems is intricately linked to our knowledge of the key interactions within the plasma and thus the status of the database for characterizing electron, ion and photon interactions with those atomic and molecular species within the plasma and knowledge of both the cross-sections and reaction rates for such collisions, both in the gaseous phase and on the surfaces of the plasma reactor. The compilation of databases required for understanding most plasmas remains inadequate. The spectroscopic database required for monitoring both technological and fusion plasmas and thence deriving fundamental quantities such as chemical composition, neutral, electron and ion temperatures is incomplete with several gaps in our knowledge of many molecular spectra, particularly for radicals and excited (vibrational and electronic) species. However, the compilation of fundamental atomic and molecular data required for such plasma databases is rarely a coherent, planned research program, instead it is a parasitic process. The plasma community is a rapacious user of atomic and molecular data but is increasingly faced with a deficit of data necessary to both interpret observations and build models that can be used to develop the next-generation plasma tools that will continue the scientific and technological progress of the late 20th and early 21st century. It is therefore necessary to both compile and curate the A&M data we do have and thence identify missing data needed by the plasma community (and other user communities). Such data may then be acquired using a mixture of benchmarking experiments and theoretical formalisms. However, equally important is the need for the scientific/technological community to recognize the need to support the value of such databases and the underlying fundamental A&M that populates them. This must be conveyed to funders who are currently attracted to more apparent high-profile projects.

  • PDF

Characterization of Al2O3 Thin Film Encasulation by Plasma Assisted Spatial ALD Process for Organic Light Emitting Diodes

  • Yong, Sang Heon;Cho, Sung Min;Chung, Ho Kyoon;Chae, Heeyeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.234.2-234.2
    • /
    • 2014
  • Organic light emitting diode (OLED) is considered as the next generation flat panel displays due to its advantages of low power consumption, fast response time, broad viewing angle and flexibility. For the flexible application, it is essential to develop thin film encapsulation (TFE) to protect oxidation of organic materials from oxidative species such as oxygen and water vapor [1]. In many TFE research, the inorganic film by atomic layer deposition (ALD) process demonstrated a good barrier property. However, extremely low throughput of ALD process is considered as a major weakness for industrial application. Recently, there has been developed a high throughput ALD, called 'spatial ALD' [2]. In spatial ALD, the precursors and reactant gases are supplied continuously in same chamber, but they are separated physically using a purge gas streams to prevent mixing of the precursors and reactant gases. In this study, the $Al_2O_3$ thin film was deposited by spatial ALD process. We characterized various process variables in the spatial ALD such as temperature, scanning speed, and chemical compositions. Water vapor transmission rate (WVTR) was determined by calcium resistance test and less than $10-^3g/m^2{\cdot}day$ was achieved. The samples were analyzed by x-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM).

  • PDF

수증기 플라즈마를 이용한 DME 개질의 최적화 방안 연구 (Optimization of DME Reforming using Steam Plasma)

  • 정경수;채우리;채호근;정명석;이주연
    • 한국산업정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.9-16
    • /
    • 2019
  • 오늘날 세계 에너지 시장에서는 친환경 에너지의 중요성이 대두되고 있다. 수소 에너지는 미래의 청정에너지원이며 무공해 에너지원 중 하나이다. 특히 수소를 이용한 연료전지 방식은 재생에너지의 유연성을 높여주고 장기간 에너지 저장 및 변환이 가능해서 화석 자원의 사용에 따른 환경문제와 자원의 고갈로 인한 에너지 문제를 동시에 해결할 수 있는 방안으로 판단된다. 본 연구의 목적은 플라즈마를 이용하여 효율적으로 수소를 생산하는 방안으로, 온도에 따른 개질반응과 수율을 확인하여 DME(Di Methyl Ether)개질의 최적화 방안을 연구하는데 있다. 연구 방법은 2.45 GHz의 전자파플라즈마 토치를 사용하여 청정 연료인 DME를 개질하여 수소를 생산하고, 저온 조건($T3=1100^{\circ}C$), 저온 과산소 조건($T3=1100^{\circ}C$), 고온 조건($T3=1376^{\circ}C$)에서 가스화 분석을 진행하였다. 저온 가스화 분석을 통해 $1100^{\circ}C$ 근처에서는 불안정한 개질 반응으로 인해 메탄이 발생하는 현상을 확인하였고, 저온 과산소 가스화 분석은 저온 가스화 분석과 비교하였을 때 수소는 적으나 이산화탄소는 많은 것을 확인할 수 있었다. 고온에서의 가스화 분석을 통해 $1200^{\circ}C$ 이상에서는 메탄이 발생하지 않았고 약 $1150^{\circ}C$ 부터 메탄이 발생하는 것을 알 수 있었다. 결론적으로 개질반응시 온도가 높을수록 수소의 비율이 높아지나 CO 비율은 증가하는 것을 볼 수 있었다. 그러나, 가스화기의 구조적인 문제로 인해 열손실과 개질의 문제가 발생함을 확인하였다. 향후 연구의 발전 방향으로는, 가스화기 개선을 통해 불완전한 연소를 줄여 높은 수율의 수소를 얻고 일산화탄소, 메탄과 같은 기체의 발생을 낮출 필요성이 있는 것으로 판단된다. 본 연구에서 제안하는 DME를 수증기 플라즈마 개질하여 수소를 생산하는 최적화 방안이, 향후 친환경, 신재생 에너지를 생산하는데 의미있는 기여를 할 수 있을 것으로 기대한다.

희토류 저감형 란타눔 지르코네이트(La2O2-ZrO2계) 세라믹스와 열차폐코팅의 제조 및 특성평가 (Fabrication and Characterization of Ceramics and Thermal Barrier Coatings of Lanthanum Zirconate with Reduced Rare-earth Contents in the La2O2-ZrO2 System)

  • 권창섭;이수진;이성민;오윤석;김형태;장병국;김성원
    • 한국분말재료학회지
    • /
    • 제22권6호
    • /
    • pp.413-419
    • /
    • 2015
  • Lanthanum zirconate, $La_2Zr_2O_7$, is one of the most promising candidates for next-generation thermal barrier coating (TBC) applications in high efficient gas turbines due to its low thermal conductivity and chemical stability at high temperature. In this study, bulk specimens and thermal barrier coatings are fabricated via a variety of sintering processes as well as suspension plasma spray in lanthanum zirconates with reduced rare-earth contents. The phase formation, microstructure, and thermo-physical properties of these oxide ceramics and coatings are examined. In particular, lanthanum zirconates with reduced rare-earth contents in a $La_2Zr_2O_7-4YSZ$ composite system exhibit a single phase of fluorite or pyrochlore after fabricated by suspension plasma spray or spark plasma sintering. The potential of lanthanum zirconate ceramics for TBC applications is also discussed.

유도 결합형 저온 플라즈마 처리에 따른 폴리카보네이트 표면 특성 변화 (Influence of Inductively Coupled Plasma on Surface Properties of Polycarbonate)

  • 원동수;이원규
    • Korean Chemical Engineering Research
    • /
    • 제48권3호
    • /
    • pp.355-358
    • /
    • 2010
  • 유도 결합 저온 플라즈마를 사용하여 폴리카보네이트 시료를 처리한 후 표면 특성 변화를 분석하였다. 표면 거칠기는 플라즈마 공정조건에 상관없이 표면 처리 후에 모두 증가하였으나, 산소 분위기에서 플라즈마 처리했을 때 가장 크게 증가하였다. 표면의 화학 결합 분석에서 플라즈마 처리 전 시료의 산소 함량이 산소 플라즈마 처리 후에 43% 증가하여 표면에 친수성 극성기의 형성이 촉진되었다. 공정 변수 중, 처리 시간에 따른 접촉각 변화는 산소 분위기에서 가장 낮은 접촉각 $9.17^{\circ}$을 얻을 수 있었고, 방전 전력의 증가는 같은 처리 시간에서 빠르게 접촉각의 감소를 보여 플라즈마 표면처리 시간을 단축시키는 효과를 주었다. 그러나 방전기체 유량의 증가에 대한 접촉각 변화에 대한 영향성이 크지 않았다.

A Conceptual Design of HAUSAT-1(CubeSat) Satellite

  • Kim, Joon-Tae;Kim, Young-Suk;Seo, Seung-Won;Kim, Young-Hyun;Chang, Young-Keun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권1호
    • /
    • pp.61-73
    • /
    • 2002
  • This paper addresses the conceptual design results of the HAUSAT-1 (Hankuk Aviation University SATellite-1), developed by Space System Research Lab. of Hankuk Aviation Univ., which is a new generation picosatellite. This project has been funded by Korean Government for the purpose of developing the space core technology. This is the first attempt at the level of university in Korea to develop the satellite weighing less than 1kg and accelerates opportunities with low construction, low launch cost space experiment platforms. The purpose of the HAUSAT-1 project is to offer graduate and undergraduate students great opportunities to be able to understand the design process of satellite development as a team member. Its mission objectives are to track its position by the GPS receiver system, to deploy the thin film solar cell panel to generate extra power, and to measure plasma density and temperature with the plasma sensor. The HAUSAT-1 will orbit at the altitude of 650 km with 65 degree inclination angle with 12 months of design mission life. It is planned to be launched on November 2003 by Russian launch vehicle "Dnepr".

DBD-PLD 방법을 이용하여 N 도핑된 ZnO 박막의 특성 조사 (Properties of N doped ZnO grown by DBD-PLD)

  • 임재현;강민석;송용원;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.15-16
    • /
    • 2008
  • We have grown N-doped ZnO thin films on sapphire substrate by employing dielectric barrier discharge in pulsed laser deposition (DBD-PLD). DBD guarantees an effective way for massive in-situ generation of N-plasma under the conventional PLD process condition. Low-temperature photoluminescence spectra of the N-doped ZnO film provided near band-edge emission after thermal annealing process. The emission peak was resolved by Gaussian fitting and showed a dominant acceptor-bound exciton peak ($A^0X$) that indicated the successful p-type doping of ZnO with N.

  • PDF

Al2O3 유전체를 이용한 산소/공기 원료에 따른 오존발생기의 특성 (A Characteristic Analysis of Ozone Generator Using the Al2O3 Ceramic Dielectric According to Gas Type(O2/Air))

  • 박현미;송현직;박원주;이광식
    • 조명전기설비학회논문지
    • /
    • 제28권5호
    • /
    • pp.76-81
    • /
    • 2014
  • The ozone generation is commonly made with silent discharge method using quartz glass dielectric. In this paper, using $Al_2O_3$ dielectric to instead of the traditional quartz glass dielectric to improve the system efficiency is presented. The dielectric was manufactured as tube shape (Internal diameter${\times}$ Outside diameter: $11{\times}15mm$) using 99% $Al_2O_3$ ceramic. The characteristics of dielectric discharge and ozone generation were studied of experiments with variation of discharge power, discharge electrode space and rate of flow for supplied gas ($O_2$/Air). As the experimental results, in the same discharge space, the ozone concentration continuously increased with input power increasing, and ozone yield increased until saturation happened. Also, the expended power increased with discharge space extended due to discharge power increased. In additional, the ozone concentration of oxygen ozone was higher than air that was observed when using oxygen ozone in proposed experiments.

유기전자소자 적용을 위한 저온 공정용 배리어 박막 연구 (Low-Temperature Processed Thin Film Barrier Films for Applications in Organic Electronics)

  • 김준모;안명찬;장영찬;배형우;이원호;이동구
    • 센서학회지
    • /
    • 제28권6호
    • /
    • pp.402-406
    • /
    • 2019
  • Recently, semiconducting organic materials have been spotlighted as next-generation electronic materials based on their tunable electrical and optical properties, low-cost process, and flexibility. However, typical organic semiconductor materials are vulnerable to moisture and oxygen. Therefore, an encapsulation layer is essential for application of electronic devices. In this study, SiNx thin films deposited at process temperatures below 150 ℃ by plasma-enhanced chemical vapor deposition (PECVD) were characterized for application as an encapsulation layer on organic devices. A single structured SiNx thin film was optimized as an organic light-emitting diode (OLED) encapsulation layer at process temperature of 80 ℃. The optimized SiNx film exhibited excellent water vapor transmission rate (WVTR) of less than 5 × 10-5 g/㎡·day and transmittance of over 87.3% on the visible region with thickness of 1 ㎛. Application of the SiNx thin film on the top-emitting OLED showed that the PECVD process did not degrade the electrical properties of the device, and the OLED with SiNx exhibited improved operating lifetime

열처리에 따른 강자성 터널링 접합의 국소전도특성 (Effects of Annealing Temperature on the Local Current Conduction of Ferromagnetic Tunnel Junction)

  • 윤대식;;;이영;박범찬;김철기;김종오
    • 한국재료학회지
    • /
    • 제13권4호
    • /
    • pp.233-238
    • /
    • 2003
  • Ferromagnetic tunnel junctions, Ta/Cu/Ta/NiFe/Cu/$Mn_{75}$ $Ir_{25}$ $Co_{70}$ $Fe_{30}$/Al-oxide, were fabricated by do magnetron sputtering and plasma oxidation process. The effect of annealing temperature on the local transport properties of the ferromagnetic tunnel junctions was studied using contact-mode Atomic Force Microscopy (AFM). The current images reflected the distribution of the barrier height determined by local I-V analysis. The contrast of the current image became more homogeneous and smooth after annealing at $280^{\circ}C$. And the average barrier height $\phi_{ave}$ increased and its standard deviation $\sigma_{\phi}$ X decreased. For the cases of the annealing temperature more than $300^{\circ}C$, the contrast of the current image became large again. And the average barrier height $\phi_{ave}$ decreased and its standard deviation $\sigma_{\phi}$ increased. Also, the current histogram had a long tail in the high current region and became asymmetric. This result means the generation of the leakage current that is resulted from the local generation of a low barrier height region. In order to obtain the high tunnel magnetoresistance(TMR) ratio, the increase of the average barrier height and the decrease of the barrier height fluctuation must be strictly controlled.led.