• Title/Summary/Keyword: Generation of Neural Network

Search Result 414, Processing Time 0.036 seconds

Robust Extraction of Lean Tissue Contour From Beef Cut Surface Image

  • Heon Hwang;Lee, Y.K.;Y.r. Chen
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.780-791
    • /
    • 1996
  • A hybrid image processing system which automatically distinguished lean tissues in the image of a complex beef cut surface and generated the lean tissue contour has been developed. Because of the in homegeneous distribution and fuzzy pattern of fat and lean tissue on the beef cut, conventional image segmentation and contour generation algorithm suffer from a heavy computing requirement, algorithm complexity and poor robustness. The proposed system utilizes an artificial neural network enhance the robustness of processing. The system is composed of pre-network , network and post-network processing stages. At the pre-network stage, gray level images of beef cuts were segmented and resized to be adequate to the network input. Features such as fat and bone were enhanced and the enhanced input image was converted tot he grid pattern image, whose grid was formed as 4 X4 pixel size. at the network stage, the normalized gray value of each grid image was taken as the network input. Th pre-trained network generated the grid image output of the isolated lean tissue. A training scheme of the network and the separating performance were presented and analyzed. The developed hybrid system showed the feasibility of the human like robust object segmentation and contour generation for the complex , fuzzy and irregular image.

  • PDF

The Generation of SPOT True Color Image Using Neural Network Algorithm

  • Chen, Chi-Farn;Huang, Chih-Yung
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.940-942
    • /
    • 2003
  • In an attempt to enhance the visual effect of SPOT image, this study develops a neural network algorithm to transform SPOT false color into simulated true color. The method has been tested using Landsat TM and SPOT images. The qualitative and quantitative comparisons indicate that the striking similarity can be found between the true and simulated true images in terms of the visual looks and the statistical analysis.

  • PDF

Using Neural Networks to Forecast Price in Competitive Power Markets

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.271-274
    • /
    • 2005
  • Under competitive power markets, various long-term and short-term contracts based on spot price are used by producers and consumers. So an accurate forecasting for spot price allow market participants to develop bidding strategies in order to maximize their benefit. Artificial Neural Network is a powerful method in forecasting problem. In this paper we used Radial Basis Function(RBF) network to forecast spot price. To learn ANN, in addition to price history, we used some other effective inputs such as load level, fuel price, generation and transmission facilities situation. Results indicate that this forecasting method is accurate and useful.

  • PDF

Associative Motion Generation for Humanoid Robot Reflecting Human Body Movement

  • Wakabayashi, Akinori;Motomura, Satona;Kato, Shohei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.121-130
    • /
    • 2012
  • This paper proposes an intuitive real-time robot control system using human body movement. Recently, it has been developed that motion generation for humanoid robots with reflecting human body movement, which is measured by a motion capture. However, in the existing studies about robot control system by human body movement, the detailed structure information of a robot, for example, degrees of freedom, the range of motion and forms, must be examined in order to calculate inverse kinematics. In this study, we have proposed Associative Motion Generation as humanoid robot motion generation method which does not need the detailed structure information. The associative motion generation system is composed of two neural networks: nonlinear principal component analysis and Jordan recurrent neural network, and the associative motion is generated with the following three steps. First, the system learns the correspondence relationship between an indication and a motion using training data. Second, associative values are extracted for associating a new motion from an unfamiliar indication using nonlinear principal component analysis. Last, the robot generates a new motion through calculation by Jordan recurrent neural network using the associative values. In this paper, we propose a real-time humanoid robot control system based on Associative Motion Generation, that enables user to control motion intuitively by human body movement. Through the task processing and subjective evaluation experiments, we confirmed the effective usability and affective evaluations of the proposed system.

Implementing a Depth Map Generation Algorithm by Convolutional Neural Network (깊이맵 생성 알고리즘의 합성곱 신경망 구현)

  • Lee, Seungsoo;Kim, Hong Jin;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.23 no.1
    • /
    • pp.3-10
    • /
    • 2018
  • Depth map has been utilized in a varity of fields. Recently research on generating depth map by artificial neural network (ANN) has gained much interest. This paper validates the feasibility of implementing the ready-made depth map generation by convolutional neural network (CNN). First, for a given image, a depth map is generated by the weighted average of a saliency map as well as a motion history image. Then CNN network is trained by test images and depth maps. The objective and subjective experiments are performed on the CNN and showed that the CNN can replace the ready-made depth generation method.

Low Sit Rate Image Coding using Neural Network (신경망을 이용한 저비트율 영상코딩)

  • 정연길;최승규;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.579-582
    • /
    • 2001
  • Vector Transformation is a new method unified vector quantization and coding. So far, codebook generation applied to coding was LBG algorithm. But using the advantage of SOFM(Self-Organizing Feature Map) based on neural network can improve a system's performance. In this paper, we generated VTC(Vector Transformation Coding) codebook applied with SOFM algorithm and compare the result for several coding rates with LBG algorithm. The problem of Vector quantization is complicated calculation and codebook generation. So, to solve this problem, we used neural network approach method.

  • PDF

On-line Training of Neural Network for Monitoring Plant Transients

  • Varde, P.V.;Moon, B.S.;Han, J.B.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.129-133
    • /
    • 2003
  • The work described in this paper deals with the proposed application of an Artificial Neural Network Model for the Advanced Pressurized Water Reactor APR-1400 transient identification. The approach adopted for testing the network take note of the expectation which should be fulfilled by a network for real-time application, like testing with data in on-line mode and use of actual or real-life patterns for training. The recall test performed demonstrates that use of neural network for transient identification is indeed an attractive preposition.

  • PDF

Deep Neural Network Weight Transformation for Spiking Neural Network Inference (스파이킹 신경망 추론을 위한 심층 신경망 가중치 변환)

  • Lee, Jung Soo;Heo, Jun Young
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.26-30
    • /
    • 2022
  • Spiking neural network is a neural network that applies the working principle of real brain neurons. Due to the biological mechanism of neurons, it consumes less power for training and reasoning than conventional neural networks. Recently, as deep learning models become huge and operating costs increase exponentially, the spiking neural network is attracting attention as a third-generation neural network that connects convolution neural networks and recurrent neural networks, and related research is being actively conducted. However, in order to apply the spiking neural network model to the industry, a lot of research still needs to be done, and the problem of model retraining to apply a new model must also be solved. In this paper, we propose a method to minimize the cost of model retraining by extracting the weights of the existing trained deep learning model and converting them into the weights of the spiking neural network model. In addition, it was found that weight conversion worked correctly by comparing the results of inference using the converted weights with the results of the existing model.

Design of SVM-Based Polynomial Neural Networks Classifier Using Particle Swarm Optimization (입자군집 최적화를 이용한 SVM 기반 다항식 뉴럴 네트워크 분류기 설계)

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1071-1079
    • /
    • 2018
  • In this study, the design methodology as well as network architecture of Support Vector Machine based Polynomial Neural Network, which is a kind of the dynamically generated neural networks, is introduced. The Support Vector Machine based polynomial neural networks is given as a novel network architecture redesigned with the aid of polynomial neural networks and Support Vector Machine. The generic polynomial neural networks, whose nodes are made of polynomials, are dynamically generated in each layer-wise. The individual nodes of the support vector machine based polynomial neural networks is constructed as a support vector machine, and the nodes as well as layers of the support vector machine based polynomial neural networks are dynamically generated as like the generation process of the generic polynomial neural networks. Support vector machine is well known as a sort of robust pattern classifiers. In addition, in order to enhance the structural flexibility as well as the classification performance of the proposed classifier, multi-objective particle swarm optimization is used. In other words, the optimization algorithm leads to sequentially successive generation of each layer of support vector based polynomial neural networks. The bench mark data sets are used to demonstrate the pattern classification performance of the proposed classifiers through the comparison of the generalization ability of the proposed classifier with some already studied classifiers.