• Title/Summary/Keyword: Generation Process

Search Result 4,598, Processing Time 0.029 seconds

Automatic Triangular Mesh Generation Over B-Spline Surfaces Including Arbitrary Holes (임의의 구멍을 포함하는 B-Spline 곡면상에서의 자동 삼각 요소망 생성)

  • 김근호;양현익
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • In the process of finite element analysis, mesh generation is tedious job which consumes tremendous time. Therefore, the automation of well shaped mesh generation from the minimal boundary input data is desirable to improve reliability and accuracy of the analysis and also to reduce the process time of the entire design process. The automation of triangular mesh generation has been relatively well treated due to its robustness and ease of handling when compared to rectangular element mesh generation. In this study, the offset method developed previously for generating plane rectangular element mesh has been corrected and modified to generate triangular element mesh on the B-spline surface having arbitrary holes. The result shows that the generated triangular mesh has the average aspect ratio over 0.9. The designed arbitrary surface shape has been interactively constructed by non-uniform B-spline theory for triangular mesh generation.

Nanoparticle generation and growth in low temperature plasma process (저온 플라즈마 공정에서의 나노 미립자 생성 및 성장)

  • Kim, Dong-Joo;Kim, Kyo-Seon
    • Particle and aerosol research
    • /
    • v.5 no.3
    • /
    • pp.95-109
    • /
    • 2009
  • A low temperature plasma process has been widely used for semiconductor fabrication and can also be applied for the preparation of solar cell, MEMS or NEMS, but they are notorious in the point of particle contamination. The nano-sized particles can be generated in the low temperature plasma process and they can induce several serious defects on the performance and quality of microelectronic devices and also on the cost of final products. For the preparation of high quality thin films of high efficiency by the low temperature plasma process, it is desirable to increase the deposition rate of thin films with reducing the particle contamination in the plasmas. In this paper, we introduced the studies on the generation and growth of nanoparticles in the low temperature plasmas and tried to introduce the recent interesting studies on nanoparticle generation in the plasma reactors.

  • PDF

Generation of Alternative Process Plan by Net Model (네트 모델을 이용한 대체 공정 계획 생성)

  • 박지형;박면웅;강민형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.743-747
    • /
    • 1994
  • A process planning system that generates alternative process plans offers multiple process plans for a part, thereby provides the flexibility to cope with the changes in shop floor status. In this paper, we introduce the concept of process net as a model for the generation of alternative process plans. We also show the usefulness of process net model by implementing the developed system to generate alternative process plans for rotational parts.

  • PDF

CGS System based on Three-Dimensional Character Modeling I (Part1:About Non-Digital Process) (3차원 캐릭터 모델기반 CGS System 구축 I (Part1:Non-Digital Process에 관하여))

  • Cho, Dong-Min
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1592-1600
    • /
    • 2008
  • This study is to help creative idea generation based on the theory of the 'reconstruction of character shape image elements', and aims to extrusion of creative and diverse shapes with combination of image elements upon computing creative image generation. In order to suggest the design generation methodology for the maximization of idea generation ability and to overcome restriction of thinking out of existing idea generation methodology, it has suggested the CGS(Character Generation System) that is a creative idea generation methodology identified and complemented the problem of the existing computerized idea generation(PDS with Proportion) method out of the preceded studies on the creative idea generation methodologies. this study is expected to have effectives as one method for idea generation or creative image generation assistance during the 3D character development process, and to serve as an assistance to overcome the restriction of the character shape image generation through diverse idea generations.

  • PDF

Parameter Optimization for Cost Reduction of Microbubble Generation by Electrolysis

  • Lucero, Arpon Jr;Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.269-280
    • /
    • 2017
  • To lower the operational cost of microbubble generation by electrolysis, optimization of parameters limiting the process must be carried out for the process to be fully adopted in environmental and industrial settings. In this study, four test electrodes were used namely aluminum, iron, stainless steel, and Dimensionally Sable Anode (DSA). We identified the effects and optimized each operational parameter including NaCl concentration, current density, pH, and electrode distance to reduce the operational cost of microbubble generation. The experimental results showed that was directly related to the rate and cost of microbubble generation. Adding NaCl and narrowing the distance between electrodes caused no substantial changes to the generation rate but greatly decreased the power requirement of the process, thus reducing operational cost. Moreover, comparison among the four electrodes operating under optimum conditions revealed that aluminum was the most efficient electrode in terms of generation rate and operational cost. This study therefore presents significant data on performing costefficient microbubble generation, which can be used in various environmental and industrial applications.

A Business Process Reengineering for the Construction of the Next Generation Information System(case study of H-University)

  • Shin, Young-Ok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.10
    • /
    • pp.159-166
    • /
    • 2017
  • This study is a discussion of business process reengineering for the next generation information system. To be concrete, we analyze and reengineer the current business process in administration of academic, general and research. This reengineering is conformed by 5 steps, as analyzing environmental status that figures out factors of inside or outside (environmental analyzing), analyzing current condition that diagnoses AS-IS process (current situation analysis), establishing information-oriented vision with strategic accomplishing goals accordingly (visioning), deducing detailed improving tasks (defining tasks), and engineering TO-BE process comprehending improving matters (engineering model). This paper shows BPR model for next generation information system.

The Low Power Algorithm using a Feasible Clustert Generation Method considered Glitch (글리치를 고려한 매핑가능 클러스터 생성 방법을 이용한 저전력 알고리즘)

  • Kim, Jaejin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.2
    • /
    • pp.7-14
    • /
    • 2016
  • In this paper presents a low power algorithm using a feasible cluster generation method considered glitch. The proposed algorithm is a method for reducing power consumption of a given circuit. The algorithm consists of a feasible cluster generation process and glitches removal process. So that glitches are not generated for the node to which the switching operation occurs most frequently in order to reduce the power consumption is a method for generating a feasible cluster. A feasible cluster generation process consisted of a node value set, dividing the node, the node aligned with the feasible cluster generation. A feasible cluster generation procedure is produced from the highest number of nodes in the output. When exceeding the number of OR-terms of the inputs of the selected node CLB prevents the signal path is varied by the evenly divided. If there are nodes with the same number of outputs selected by the first highest number of nodes in the input produces a feasible cluster. Glitch removal process removes glitches through the path balancing in the same manner as [5]. Experimental results were compared with the proposed algorithm [5]. Number of blocks has been increased by 5%, the power consumption was reduced by 3%.

An Effect of Process Parameters on the Generation of Sheet Metal Curvatures in the Incremental Roll Forming Process (점진적 롤 성형 공정에서 공정 변수가 박판 금속의 곡률 생성에 미치는 영향)

  • 윤석준;양동열
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.122-128
    • /
    • 2004
  • In order to make a doubly-curved sheet metal effectively, a sheet metal forming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation in thickness. The developed process is an unconstrained forming process with no holder. For this study, the experimental equipment is set up with the roll set which consists of two pairs of support rolls and one center roll. In the experiments using aluminum sheets, it is found that the curvature of the formed sheet metal is determined by controlling the distance between supporting rolls in pairs and the forming depth of the center roll and it also depends on the thickness of the sheet metal. In order to check the effect of process parameters on the generation of sheet metal curvatures in this process, the orthogonal array is adopted. From the experimental results, among the process parameters, the distance between supporting rolls in pairs along the direction of one principal radius of curvature as well as the forming depth and the thickness of the material is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principal radius of curvature, does not have an significant effect on the generation of the curvature in that direction. It mainly affects the generation of curvature in its own direction with the forming depth and the thickness of the material.

An Effect of Process Parameters on the Generation of Sheet Metal Curvatures in the Incremental Roll Forming Process (점진적 롤 성형 공정에서 공정 변수가 박판 금속의 곡률 생성에 미치는 영향)

  • Yoon S. J.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.53-57
    • /
    • 2003
  • In order to make a doubly curved sheet metal effectively, a sheet metal farming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation to thickness. The developed process is an unconstrained forming process with no holder. For this study, the experimental equipment is set up with the roll set which consists of two pairs of support rolls and one center roll. In the experiments using aluminum sheets, it is found that the curvature of the formed sheet metal is determined by controlling the distance between supporting rolls in pairs and the forming depth of the center roll and it also depends on the thickness of the sheet metal. In order to check the effect of process parameters on the generation of sheet metal curvatures in this process, the orthogonal array is adopted. From the experimental results, among the process parameters, the distance between supporting rolls in pairs along the same direction of one principle radius of curvature as well as the forming depth and the thickness of the material is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principle radius of curvature, does not have an significant effect on the generation of the curvature in that direction. It just affects the generation of curvature in its own direction mainly with the forming depth and the thickness of the material.

  • PDF

Physical Modeling of Aluminum-Foam Generation (알루미늄 발포공정의 물리적 모델링)

  • Oak S. M.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.297-300
    • /
    • 2001
  • Physical modeling technique is applied to investigate foam generation in molten aluminum. By using room temperature water with specially designed equipment, the effects of stirrer type, fluid viscosity(glycerine added to water) and stirring velocity on foam generation behaviors are intensively analysed The distribution and size of bubbles varied with each process parameters but the most important parameters are stirring velocity and fluid viscosity. The results obtained from physical simulation have been confirmed by actual aluminum foam generation experiment at various process variables.

  • PDF