• Title/Summary/Keyword: Generated Data

Search Result 6,856, Processing Time 0.033 seconds

A Study of Inverse Modeling from Micro Gas Turbine Experimental Test Data (소형 가스터빈 엔진 실험 데이터를 이용한 역모델링 연구)

  • Kong, Chang-Duk;Lim, Se-Myeong;Koo, Young-Ju;Kim, Keon-Woo;Oh, Seong-Hwan;Kim, Ji-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.537-541
    • /
    • 2009
  • The gas turbine engine performance is greatly relied on its component performance characteristics. Generally, acquisition of component maps is not easy for engine purchasers because it is an expensive intellectual property of gas turbine engine supplier. In the previous work, the maps were inversely generated from engine performance deck data, but this method is limited to obtain the realistic maps due to calculated performance deck data. Therefore this work proposes newly to generate more realistic compressor map from experimental performance test data. And then a realistic compressor map can be generated form those processed data using the proposed extended scaling method at each rotational speed. Evaluation can be made through comparison between performance analysis results using the performance simulation program including the generated compressor map and on-condition monitoring performance data.

  • PDF

A Broken Image Screening Method based on Histogram Analysis to Improve GAN Algorithm (GAN 알고리즘 개선을 위한 히스토그램 분석 기반 파손 영상 선별 방법)

  • Cho, Jin-Hwan;Jang, Jongwook;Jang, Si-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.591-597
    • /
    • 2022
  • Recently, many studies have been done on the data augmentation technique as a way to efficiently build datasets. Among them, a representative data augmentation technique is a method of utilizing Generative Adversarial Network (GAN), which generates data similar to real data by competitively learning generators and discriminators. However, when learning GAN, there are cases where a broken pixel image occurs among similar data generated according to the environment and progress, which cannot be used as a dataset and causes an increase in learning time. In this paper, an algorithm was developed to select these damaged images by analyzing the histogram of image data generated during the GAN learning process, and as a result of comparing them with the images generated in the existing GAN, the ratio of the damaged images was reduced by 33.3 times(3,330%).

Improving Orbit Determination Precision of Satellite Optical Observation Data Using Deep Learning (심층 학습을 이용한 인공위성 광학 관측 데이터의 궤도결정 정밀도 향상)

  • Hyeon-man Yun;Chan-Ho Kim;In-Soo Choi;Soung-Sub Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.262-271
    • /
    • 2024
  • In this paper, by applying deep learning, one of the A.I. techniques, through angle information, which is optical observation data generated when observing satellites at observatories, distance information from observatories is learned to predict range data, thereby increasing the precision of satellite's orbit determination. To this end, we generated observational data from GMAT, reduced the learning data error of deep learning through preprocessing of the generated observational data, and conducted deep learning through MATLAB. Based on the predicted distance information from learning, trajectory determination was performed using an extended Kalman filter, one of the filtering techniques for trajectory determination, through GMAT. The reliability of the model was verified by comparing and analyzing the orbital determination with angular information without distance information and the orbital determination result with predicted distance information from the model.

A Study on Component Map Generation of a Gas Turbine Engine Using Genetic Algorithms (유전자 알고리즘을 이용한 가스터빈 엔진의 구성품 성능선도 생성에 관한 연구)

  • Kong Chang-Duk;Kho Seong-Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.44-52
    • /
    • 2004
  • In this study, a component map generation method using experimental data and the genetic algorithms are newly proposed. In order to generate the performance map for components of this engine, after obtaining engine performance data through many experimental tests, and then the third order equations which have relationships the mass flow function the pressure ratio and the isentropic efficiency as to the engine rotational speed were derived by using the genetic algorithms. A steady-state performance analysis was performed with the generated maps of the compressor by the commercial gas turbine performance analysis program GASTURB. In comparison, it was found that the component maps can be generated from the experimental test data by using the genetic algorithms, and it was confirmed that the analysis results using the generated maps were very similar to those using the scaled maps from the GASTURB.

DNA Fingerprinting of Jute Germplasm by RAPD

  • Hossain, Mohammad Belayat;Haque, Samiul;Khan, Haseena
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.414-419
    • /
    • 2002
  • The genotype characteristic of cultivars was investigated, along with varieties of both of the jute species, Corchorus olitorius and Corchorus capsularis, in the germplasm collection at the Bangladesh Jute Research Institute (BJRI). DNA fingerprinting was generated for 9 different varieties and 12 accessions of jute cultivars by using random amplified polymorphic DNA(RAPD). A total of 29 arbitrary oligonucleotide primers were screened. Seven primers gave polymorphism within the varieties, and 6 primers detected polymorphism within the accessions that were tested. A dendrogram was engendered from these data, and this gave a distinct clustering of the cultivated species of jute. Therefore, we generated RAPD markers, which are species-specific. These primers can distinguish between C. olitorius and C. capsularis. From the dendrogram that we generated between the various members of these two species, we found the existing genetic classification that agrees with our molecular marking data. A different dendrogram showed that jute accessions could be clustered into three groups. These data will be invaluable in the conservation and utilization of the genetic pool in the germplasm collection.

Development of On-Line Diagnostic Expert System Algorithmic Sensor Validation (진단 전문가시스템의 개발 : 연산적 센서검증)

  • 김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.323-338
    • /
    • 1994
  • This paper outlines a framework for performing intelligent sensor validation for a diagnostic expert system while reasoning under uncertainty. The emphasis is on the algorithmic preprocess technique. A companion paper focusses on heuristic post-processing. Sensor validation plays a vital role in the ability of the overall system to correctly detemine the state of a plant monitored by imperfect sensors. Especially, several theoretical developments were made in understanding uncertain sensory data in statistical aspect. Uncertain information in sensory values is represented through probability assignments on three discrete states, "high", "normal", and "low", and additional sensor confidence measures in Algorithmic Sv.Upper and lower warning limits are generated from the historical learning sets, which represents the borderlines for heat rate degradation generated in the Algorithmic SV initiates a historic data base for better reference in future use. All the information generated in the Algorithmic SV initiate a session to differentiate the sensor fault from the process fault and to make an inference on the system performance. This framework for a diagnostic expert system with sensor validation and reasonig under uncertainty applies in HEATXPRT$^{TM}$, a data-driven on-line expert system for diagnosing heat rate degradation problems in fossil power plants.

Robust Deep Age Estimation Method Using Artificially Generated Image Set

  • Jang, Jaeyoon;Jeon, Seung-Hyuk;Kim, Jaehong;Yoon, Hosub
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.643-651
    • /
    • 2017
  • Human age estimation is one of the key factors in the field of Human-Robot Interaction/Human-Computer Interaction (HRI/HCI). Owing to the development of deep-learning technologies, age recognition has recently been attempted. In general, however, deep learning techniques require a large-scale database, and for age learning with variations, a conventional database is insufficient. For this reason, we propose an age estimation method using artificially generated data. Image data are artificially generated through 3D information, thus solving the problem of shortage of training data, and helping with the training of the deep-learning technique. Augmentation using 3D has advantages over 2D because it creates new images with more information. We use a deep architecture as a pre-trained model, and improve the estimation capacity using artificially augmented training images. The deep architecture can outperform traditional estimation methods, and the improved method showed increased reliability. We have achieved state-of-the-art performance using the proposed method in the Morph-II dataset and have proven that the proposed method can be used effectively using the Adience dataset.

A Study On Component Map Generation Of A Gas Turbine Engine Using Genetic Algorithms (유전자 알고리즘을 이용한 가스터빈 엔진의 구성품 성능선도 생성에 관한 연구)

  • Kong Chang-Duk;Kho Seong-Hee;Choi Hyeon-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.195-200
    • /
    • 2004
  • In this study, a component map generation method using experimental data and the genetic algorithms are newly proposed. In order to generate the performance map for components of this engine, after obtaining engine performance data through many experimental tests, and then the third order equations which have relationships the mass flow function the pressure ratio and the isentropic efficiency as to the engine rotational speed were derived by using the genetic algorithms. A steady-state performance analysis was peformed with the generated maps of the compressor by the commercial gas turbine performance analysis program GASTURB(1). In comparison, it was found that the component maps can be generated from the experimental test data by using the genetic algorithms, and it was confirmed that the analysis results using the generated maps were very similar to those using the scaled maps from the GASTURB.

  • PDF

Obstacle Avoidance of Unmanned Surface Vehicle based on 3D Lidar for VFH Algorithm (무인수상정의 장애물 회피를 위한 3차원 라이다 기반 VFH 알고리즘 연구)

  • Weon, Ihn-Sik;Lee, Soon-Geul;Ryu, Jae-Kwan
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.945-953
    • /
    • 2018
  • In this paper, we use 3-D LIDAR for obstacle detection and avoidance maneuver for autonomous unmanned operation. It is aimed to avoid obstacle avoidance in unmanned water under marine condition using only single sensor. 3D lidar uses Quanergy's M8 sensor to collect surrounding obstacle data and includes layer information and intensity information in obstacle information. The collected data is converted into a three-dimensional Cartesian coordinate system, which is then mapped to a two-dimensional coordinate system. The data including the obstacle information converted into the two-dimensional coordinate system includes noise data on the water surface. So, basically, the noise data generated regularly is defined by defining a hypothetical region of interest based on the assumption of unmanned water. The noise data generated thereafter are set to a threshold value in the histogram data calculated by the Vector Field Histogram, And the noise data is removed in proportion to the amount of noise. Using the removed data, the relative object was searched according to the unmanned averaging motion, and the density map of the data was made while keeping one cell on the virtual grid map. A polar histogram was generated for the generated obstacle map, and the avoidance direction was selected using the boundary value.

Generative Model of Acceleration Data for Deep Learning-based Damage Detection for Bridges Using Generative Adversarial Network (딥러닝 기반 교량 손상추정을 위한 Generative Adversarial Network를 이용한 가속도 데이터 생성 모델)

  • Lee, Kanghyeok;Shin, Do Hyoung
    • Journal of KIBIM
    • /
    • v.9 no.1
    • /
    • pp.42-51
    • /
    • 2019
  • Maintenance of aging structures has attracted societal attention. Maintenance of the aging structure can be efficiently performed with a digital twin. In order to maintain the structure based on the digital twin, it is required to accurately detect the damage of the structure. Meanwhile, deep learning-based damage detection approaches have shown good performance for detecting damage of structures. However, in order to develop such deep learning-based damage detection approaches, it is necessary to use a large number of data before and after damage, but there is a problem that the amount of data before and after the damage is unbalanced in reality. In order to solve this problem, this study proposed a method based on Generative adversarial network, one of Generative Model, for generating acceleration data usually used for damage detection approaches. As results, it is confirmed that the acceleration data generated by the GAN has a very similar pattern to the acceleration generated by the simulation with structural analysis software. These results show that not only the pattern of the macroscopic data but also the frequency domain of the acceleration data can be reproduced. Therefore, these findings show that the GAN model can analyze complex acceleration data on its own, and it is thought that this data can help training of the deep learning-based damage detection approaches.