Acknowledgement
This research was supported by the MSIT (Ministry of Science and ICT),Korea, under the Grand Information Technology Research Center support program(IITP-2022-2020-0-01791) supervised by the IITP(Institute for Information & communications Technology Planning & Evaluation)
References
- K. M. Choi, Y. M. Kim, J. P. Shin, S. M. Sung, and B. K. Lee, "Data set design and implementation for Assistive walking device AI service construction," in Proceedings of the Korean Society of Computer Information Conference, Busan, vol. 29, no. 1, pp. 227-229, Jan. 2021.
- J. S. Lee, B. K. Ko, E. S. Kang, H. J. Choi, J. O. Kim, and B. K. Lee, "AI Learning Cookie Image Data Set Construction," in Proceedings of the Korean Society of Computer Information Conference, Jeju, vol. 28, no. 2, pp. 347-349, Jul. 2020.
- H. C. Lee, S. Y. Shin, "Development of Data Collection System using Google Environment," in Proceedings of The Korean Institute of Information and Communication Science, Busan, vol. 23, no. 2, pp. 704-705, Oct. 2019.
- J. S. Kim and S. W. Jang, "Construction Method of Multifaceted Image Datasets for Improving Object Recognition Rate in Deep Learniung System," in International Conference on Future Information & Communication Engineering, Online, vol. 12, no. 1, pp. 144-147, Feb. 2021.
- E. S. Park, Y. J. Yang, J. H. Jeon, and E. S. Ryu, "Image Web Crawling Program for Artificial Intelligence Datasets," in Proceedings of the Korean Society of Broad Engineers, Seoul, p. 55, Nov. 2018.
- J. H. Choi, K. M. Irick, J. Hardin, W. Qiu, A. Yuille, J. Sampson, and V. Narayanan, "Stochastic Functional Verification of DNN Design through Progressive Virtual Dataset Generation," in 2018 IEEE International Symposiumon Circuits and Systems(ISCAS), Florence, pp. 1-5, 2018.
- I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative Adversarial Networks" arXiv: 1406.2661 [stat.ML], Jun. 2014. Available: https://arxiv.org/abs/1406.2661
- S. H. Lim, Y. G. Shin, C. H. Yoo, H. K. Lee, and S. J. Ko, "Data Augmentation method using WGAN," in 2017 Institute of Electronics and Information Engineers Fall Conference(IEIE), Incheon, pp. 516-519, Nov. 2017.
- Y. J. Yang, Y. G. Hong, and J. H. Park, "Efficient Learning Dataset Generation and Data Selection Using Generative Adversarial Network and GSVD-Based Linear Discriminant Analysis," The Journal of Korean Institute of Communications and Information Sciences, vol. 45, no. 7, pp. 1166-1173, Jul. 2020. https://doi.org/10.7840/kics.2020.45.7.1166
- M. Onder and Y. S. Akgul, "Automatic Generation of Matching Clothes Design Using Generative Adversarial Networks," in 2020 28th Signal Processing and Communications Applications Conference (SIU), Gaziantep, pp. 1-4, 2020.
- J. H. Jeong, J. W. Kim, and H. T. Kim, "Expanding Training Datasets for Image Classification Network using GAN," in Proceedings of The Korean Institute of Information and Communication Science, vol. 23, no. 2, pp. 75-76, Oct. 2019.
- S. J. Bae, M. G. Kim, and H. K. Jung, "GAN System Using Noise for Image Generation," Journal of the Korea Institute of Information and Communication Engineering, vol. 24, no. 6, pp. 700-705, Jun. 2020. https://doi.org/10.6109/JKIICE.2020.24.6.700
- T. Kerras, S. Laine, and T. Aila, "A Style-Based Generator Architecture for Generative Adversarial Networks," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), CA: California, pp. 4401-4410, 2019.
- T. Kerras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, "Analyzing and Improving the Image Quality of StyleGAN," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), WA: Washington, pp. 8110-8119, 2020.
- NVlabs / StyleGAN2 - Training Networks [Internet]. Available: https://github.com/NVlabs/stylegan2