• Title/Summary/Keyword: Generalized minimum variance adaptive control

Search Result 6, Processing Time 0.02 seconds

Characteristics Improvement of Hydraulic Servosystem by Using Generalized Minimum Variance Adaptive Control (일반화최소분산 적응제어를 이용한 유압 서보계의 특성개선에 관한 연구)

  • 박용호;김기홍;이진걸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.388-394
    • /
    • 2003
  • Hydraulic system is difficult to obtain a suitable performance due to the nonlinearity load pressure change and system parameter variation. The requirement of control a1gorithm has been complex in order to satisfy the performance. The adaptive control is a control method which is suggested to achieve the control object under the plant characteristics change. In spite of the case that plant characteristics and the degree of variation are difficult to grasp. the adaptive control could keep the characteristics of closed-loop system generally. In this study. a method of combined generalized minimum variance adaptive control (GMVAC) and output error feedback is proposed, in order to solve the problem of non-minimum phase of plant and the vibration and overshoot in initial response. The control performance according to the variation of characteristics of plant is evaluated by changing the supply pressure. The experimental results show the effectiveness of the proposed scheme.

A Study on the Characteristics Improvement of Fluid Power Actuator Using Adaptive Control (적응제어를 이용한 유압 액츄에이터의 특성개선에 관한 연구)

  • 염만오;윤일로
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.124-132
    • /
    • 2004
  • A hydraulic system is difficult to keep the performance due to non-linearity, load pressure which changes according to working condition and system parameter variation, the requirement of control algorithm has been risen in order to satisfy them. An adaptive control is a control method which is suggested to achieve a control object though plant characteristics change. In spite of the case that plant characteristics and the degree of variation are difficult to grasp, adaptive control can keep the characteristics of closed-loop system regularly. In this study GMVAC(generalized minimum variance adaptive control) combined with output error feedback is proposed in order to solve problems of non-minimum phase, vibration and overshoot in initial response of the plant. The control performance according to the variation of characteristics of the plant is evaluated by changing the supply pressure only.

A Predictive Controller Based on the Generalized Minimum Variance Approach (일반화 최소분산법을 기초로 한 예측 제어기)

  • 한홍석;양해원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.8
    • /
    • pp.557-562
    • /
    • 1988
  • This paper presents a class of discrete adaptive controller that can be applied to a plant without sufficient a priori information. It is well known that the GMV(Generalized Minmum Variance) contrlller performs satisfactorily if the plant time delay is known. By introducing the long-range prediction into the GMV controller, robustness to the time delay can be improved, although optimality is lost. Such an idea motivates a predictive control system to be proposed here, where the system minimizes multi-stage cost via the GMV approach. Moreover, the detuning control weight is determined by an on-line tuning method. It is shown that robustness, computational efficiency, and performance of the resulting control system are improved as compared with those of the GPC(Generalized Predictive Control)system.

  • PDF

Design of a Self-tuning Controller with a PID Structure Using Neural Network (신경회로망을 이용한 PID구조를 갖는 자기동조제어기의 설계)

  • Cho, Won-Chul;Jeong, In-Gab;Shim, Tae-Eun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.1-8
    • /
    • 2002
  • This paper presents a generalized minimum-variance self-tuning controller with a PID structure using neural network which adapts to the changing parameters of the nonlinear system with nonminimum phase behavior and time delays. The neural network is used to estimate the controller parameters, and the control output is obtained through estimated controller parameter. In order to demonstrate the effectiveness of the proposed algorithm, the computer simulation is done to adapt the nonlinear nonminimum phase system with time delays and changed system parameter after a constant time. The proposed method compared with direct adaptive controller using neural network.

Adaptive Control for Discrete Process with Time Varying Delay (시변 지연시간을 갖는 이산형 프로세스의 적응제어)

  • 김영철;김국헌;정찬수;양흥석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.11
    • /
    • pp.503-510
    • /
    • 1986
  • A new algorithm based on the concept of prediction error minimization is suggested to estimate the time varying delay in discrete processes. In spite of the existence of the stochastic noise, this algorithm can estimate time varying delay accurately. Computation time of this algorithm is far less than that of the previous extended parameter methods. With the use of this algorithm, generalized minimum variance control shows good control behavior in simulations.

  • PDF

The Design of a Fuzzy Adaptive Controller for the Process Control (공정제어를 위한 퍼지 적응제어기의 설계)

  • Lee Bong Kuk
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.7
    • /
    • pp.31-41
    • /
    • 1993
  • In this paper, a fuzzy adaptive controller is proposed for the process with large delay time and unmodelled dynamics. The fuzzy adaptive controller consists of self tuning controller and fuzzy tuning part. The self tuning controller is designed with the continuous time GMV (generalized minimum variance) using emulator and weighted least square method. It is realized by the hybrid method. The controller has robust characteristics by adapting the inference rule in design parameters. The inference processing is tuned according to the operating point of the process having the nonlinear characteristics considering the practical application. We review the characteristics of the fuzzy adaptive controller through the simulation. The controller is applied to practical electric furnace. As a result, the fuzzy adaptive controller shows the better characteristics than the simple numeric self tuning controller and the PI controller.

  • PDF