• Title/Summary/Keyword: Generalized fractional integral operators

Search Result 37, Processing Time 0.022 seconds

THE (k, s)-FRACTIONAL CALCULUS OF CLASS OF A FUNCTION

  • Rahman, G.;Ghaffar, A.;Nisar, K.S.;Azeema, Azeema
    • Honam Mathematical Journal
    • /
    • v.40 no.1
    • /
    • pp.125-138
    • /
    • 2018
  • In this present paper, we deal with the generalized (k, s)-fractional integral and differential operators recently defined by Nisar et al. and obtain some generalized (k, s)-fractional integral and differential formulas involving the class of a function as its kernels. Also, we investigate a certain number of their consequences containing the said function in their kernels.

SOME INTEGRAL INEQUALITIES IN THE FRAMEWORK OF GENERALIZED K-PROPORTIONAL FRACTIONAL INTEGRAL OPERATORS WITH GENERAL KERNEL

  • Valdes, Juan E. Napoles
    • Honam Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.587-596
    • /
    • 2021
  • In this article, using the concept proposed reciently by the author, of a Generalized k-Proportional Fractional Integral Operators with General Kernel, new integral inequalities are obtained for convex functions. It is shown that several known results are particular cases of the proposed inequalities and in the end new directions of work are provided.

A Study of Marichev-Saigo-Maeda Fractional Integral Operators Associated with the S-Generalized Gauss Hypergeometric Function

  • Bansal, Manish Kumar;Kumar, Devendra;Jain, Rashmi
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.433-443
    • /
    • 2019
  • In this work, we evaluate the Mellin transform of the Marichev-Saigo-Maeda fractional integral operator with Appell's function $F_3$ type kernel. We then discuss six special cases of the result involving the Saigo fractional integral operator, the $Erd{\acute{e}}lyi$-Kober fractional integral operator, the Riemann-Liouville fractional integral operator and the Weyl fractional integral operator. We obtain new and known results as special cases of our main results. Finally, we obtain the images of S-generalized Gauss hypergeometric function under the operators of our study.

ON OPIAL-TYPE INEQUALITIES VIA A NEW GENERALIZED INTEGRAL OPERATOR

  • Farid, Ghulam;Mehboob, Yasir
    • Korean Journal of Mathematics
    • /
    • v.29 no.2
    • /
    • pp.227-237
    • /
    • 2021
  • Opial inequality and its consequences are useful in establishing existence and uniqueness of solutions of initial and boundary value problems for differential and difference equations. In this paper we analyze Opial-type inequalities for convex functions. We have studied different versions of these inequalities for a generalized integral operator. Further difference of Opial-type inequalities are utilized to obtain generalized mean value theorems, which further produce various interesting derivations for fractional and conformable integral operators.

SOME NEW ESTIMATES FOR EXPONENTIALLY (ħ, m)-CONVEX FUNCTIONS VIA EXTENDED GENERALIZED FRACTIONAL INTEGRAL OPERATORS

  • Rashid, Saima;Noor, Muhammad Aslam;Noor, Khalida Inayat
    • Korean Journal of Mathematics
    • /
    • v.27 no.4
    • /
    • pp.843-860
    • /
    • 2019
  • In the article, we present several new Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for the exponentially (ħ, m)-convex functions via an extended generalized Mittag-Leffler function. As applications, some variants for certain typ e of fractional integral operators are established and some remarkable special cases of our results are also have been obtained.

Certain Fractional Integral Operators and Extended Generalized Gauss Hypergeometric Functions

  • CHOI, JUNESANG;AGARWAL, PRAVEEN;JAIN, SILPI
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.695-703
    • /
    • 2015
  • Several interesting and useful extensions of some familiar special functions such as Beta and Gauss hypergeometric functions and their properties have, recently, been investigated by many authors. Motivated mainly by those earlier works, we establish some fractional integral formulas involving the extended generalized Gauss hypergeometric function by using certain general pair of fractional integral operators involving Gauss hypergeometric function $_2F_1$, Some interesting special cases of our main results are also considered.

ON GENERALIZED WRIGHT'S HYPERGEOMETRIC FUNCTIONS AND FRACTIONAL CALCULUS OPERATORS

  • Raina, R.K.
    • East Asian mathematical journal
    • /
    • v.21 no.2
    • /
    • pp.191-203
    • /
    • 2005
  • In the present paper we first establish some basic results for a substantially more general class of functions defined below. The results include simple differentiation and fractional calculus operators(integration and differentiation of arbitrary orders) for this class of functions. These results are then invoked in determining similar properties for the generalized Wright's hypergeometric functions. Further, norm estimate of a certain class of integral operators whose kernel involves the generalized Wright's hypergeometric function, and its composition(and other related properties) with the fractional calculus operators are also investigated.

  • PDF

FRACTIONAL CALCULUS OPERATORS OF THE PRODUCT OF GENERALIZED MODIFIED BESSEL FUNCTION OF THE SECOND TYPE

  • Agarwal, Ritu;Kumar, Naveen;Parmar, Rakesh Kumar;Purohit, Sunil Dutt
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.557-573
    • /
    • 2021
  • In this present paper, we consider four integrals and differentials containing the Gauss' hypergeometric 2F1(x) function in the kernels, which extend the classical Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential operators. Formulas (images) for compositions of such generalized fractional integrals and differential constructions with the n-times product of the generalized modified Bessel function of the second type are established. The results are obtained in terms of the generalized Lauricella function or Srivastava-Daoust hypergeometric function. Equivalent assertions for the Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential are also deduced.

SOME PROPERTIES OF GENERALIZED BESSEL FUNCTION ASSOCIATED WITH GENERALIZED FRACTIONAL CALCULUS OPERATORS

  • Jana, Ranjan Kumar;Pal, Ankit;Shukla, Ajay Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.41-50
    • /
    • 2021
  • This paper devoted to obtain some fractional integral properties of generalized Bessel function using pathway fractional integral operator. We also find the pathway transform of the generalized Bessel function in terms of Fox H-function.

CERTAIN FRACTIONAL INTEGRAL INEQUALITIES ASSOCIATED WITH PATHWAY FRACTIONAL INTEGRAL OPERATORS

  • Agarwal, Praveen;Choi, Junesang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.181-193
    • /
    • 2016
  • During the past two decades or so, fractional integral inequalities have proved to be one of the most powerful and far-reaching tools for the development of many branches of pure and applied mathematics. Very recently, many authors have presented some generalized inequalities involving the fractional integral operators. Here, using the pathway fractional integral operator, we give some presumably new and potentially useful fractional integral inequalities whose special cases are shown to yield corresponding inequalities associated with Riemann-Liouville type fractional integral operators. Relevant connections of the results presented here with those earlier ones are also pointed out.