Acknowledgement
This work was supported by the Dong-A University research fund.
References
- M. Andric, A. Barbir, G. Farid, J. Pecaric, More on certain Opial-type inequality for fractional derivatives and exponentially convex functions, Nonlinear Funct. Anal. Appl., 19 (4) (2014), 563-583.
- M. Andric, J. Pecaric, I. Peric, Improvement of composition rule for the Canavati fractional derivatives and applications to Opial-type inequalities, Dynam. Systems. Appl., 20 (2011), 383-394.
- M. Andric, J. Pecaric, I. Peric, Composition identities for the Caputo fractional derivatives and application to Opial type inequalities, Math. Inequal. Appl., 16 (3)(2013), 657-670.
- M. Andric, A. Barbir, G. Farid and J. Pecaric, Opial-type inequality due to Agarwal-Pang and fractional differential inequalities, Integral Transforms Spec. Funct., 25 (4) (2013), 324-335. https://doi.org/10.1080/10652469.2013.851079
- G. A. Anastassiou, General fractional Opial type inequalities, Acta Appl. Math., 54 (1998), 303-317 https://doi.org/10.1023/A:1006154105441
- G. A. Anastassiou, Opial type inequalities involving fractional derivatives of functions, Nonlinear Stud., 6 (2)(1999), 207-230.
- D. W. Boyd, Best constants in a class of integral inequalities, Pacific J. Math. 30 (1969), 367-383. https://doi.org/10.2140/pjm.1969.30.367
- H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274-1291. https://doi.org/10.1016/j.jmaa.2016.09.018
- D. W. Boyd, J. S. W. Wong, An extension of Opial's inequality, J. Math. Anal. Appl., 19 (1967), 100-102. https://doi.org/10.1016/0022-247x(67)90024-8
- G. Farid, J. Pecaric, Opial type integral inequalities for fractional derivatives II, Fractional Differ. Calc., 2 (2) (2012), 139-155.
- G. Farid, A. U. Rehman, S. Ullah, A. Nosheen, M. Waseem, Y. Mehboob, Opial-type inequalities for convex functions and associated results in fractional calculus, Adv. Difference Equ., 2019 (2019), 2019:152. https://doi.org/10.1186/s13662-019-2089-1
- G. Farid, J. Pecaric, Opial type integral inequalities for fractional derivatives, Fractional Differ. Calc., 2 (1) (2012), 31-54.
- A. Ur. Rehman, G. Farid, J. Pecaric Mean value theorem associated to the differences of recent Opial-type inequalities and their fractional versions, Fractional Differ. Calc., 10 (2) (2020), 213-224.
- G. Farid, Existence of an integral operator and its consequences in fractional and conformable integrals, Open J. Math. Sci. 3 (2019), 210-216. https://doi.org/10.30538/oms2019.0064
- S. Habib, S. Mubeen, M. N. Naeem, Chebyshev type integral inequalities for generalized k-fractional conformable integrals, J. Inequal. Spec. Funct., 9 (4) (2018), 53-65.
- F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Difference Equ., 2017 (2017), 247pp. https://doi.org/10.1186/s13662-017-1306-z
- Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville k-Fractional Integrals Associated With Ostrowski Type Inequalities and Error Bounds of Hadamard Inequalities, IEEE Access, 6 (2018), 64946-64953. https://doi.org/10.1109/access.2018.2878266
- T. U. Khan, M. A. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378-389. https://doi.org/10.1016/j.cam.2018.07.018
- A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, North-Holland Mathematics studies, 204, Elsevier, New York-London, 2006.
- D. S. Mitrinovic, J. E. Pecaric, Generalization of two inequalities of Godunova and Levin, Bull. Polish Acad. Sci. Math., 36 (1988), 645-648.
- S. Mubeen, G. M. Habibullah, k-fractional integrals and applications, Int. J. Contemp. Math. Sci., 7 (2012), 89-94.
- Z. Opial, Sur une inegalite, Ann. Polon. Math., 8 (1960), 29-32. https://doi.org/10.4064/ap-8-1-29-32
- B. G. Pachpatte, On Opial-type integral inequalities, J. Math. Anal. Appl., 120 (1986), 547-556. https://doi.org/10.1016/0022-247X(86)90176-9
- B. G. Pachpatte, A note on generalization Opial type inequalities, Tamkang J. Math., 24 (1993), 229-235. https://doi.org/10.5556/j.tkjm.24.1993.4494
- J. Pecaric , F. Proschan, Y. C. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Inc., (1992).
- M. Z. Sarikaya, M. Dahmani, M. E. Kiris, F. Ahmad, (k, s)-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat., 45 (1) (2016), 77-89. doi:10.15672/HJMS.20164512484.
Cited by
- On Opial-Type Inequalities for Superquadratic Functions and Applications in Fractional Calculus vol.2021, 2021, https://doi.org/10.1155/2021/6379883