DOI QR코드

DOI QR Code

ON OPIAL-TYPE INEQUALITIES VIA A NEW GENERALIZED INTEGRAL OPERATOR

  • Farid, Ghulam (Department of Mathematics, COMSATS University Islamabad) ;
  • Mehboob, Yasir (Department of Mathematics, COMSATS University Islamabad)
  • Received : 2020.02.09
  • Accepted : 2021.05.24
  • Published : 2021.06.30

Abstract

Opial inequality and its consequences are useful in establishing existence and uniqueness of solutions of initial and boundary value problems for differential and difference equations. In this paper we analyze Opial-type inequalities for convex functions. We have studied different versions of these inequalities for a generalized integral operator. Further difference of Opial-type inequalities are utilized to obtain generalized mean value theorems, which further produce various interesting derivations for fractional and conformable integral operators.

Keywords

Acknowledgement

This work was supported by the Dong-A University research fund.

References

  1. M. Andric, A. Barbir, G. Farid, J. Pecaric, More on certain Opial-type inequality for fractional derivatives and exponentially convex functions, Nonlinear Funct. Anal. Appl., 19 (4) (2014), 563-583.
  2. M. Andric, J. Pecaric, I. Peric, Improvement of composition rule for the Canavati fractional derivatives and applications to Opial-type inequalities, Dynam. Systems. Appl., 20 (2011), 383-394.
  3. M. Andric, J. Pecaric, I. Peric, Composition identities for the Caputo fractional derivatives and application to Opial type inequalities, Math. Inequal. Appl., 16 (3)(2013), 657-670.
  4. M. Andric, A. Barbir, G. Farid and J. Pecaric, Opial-type inequality due to Agarwal-Pang and fractional differential inequalities, Integral Transforms Spec. Funct., 25 (4) (2013), 324-335. https://doi.org/10.1080/10652469.2013.851079
  5. G. A. Anastassiou, General fractional Opial type inequalities, Acta Appl. Math., 54 (1998), 303-317 https://doi.org/10.1023/A:1006154105441
  6. G. A. Anastassiou, Opial type inequalities involving fractional derivatives of functions, Nonlinear Stud., 6 (2)(1999), 207-230.
  7. D. W. Boyd, Best constants in a class of integral inequalities, Pacific J. Math. 30 (1969), 367-383. https://doi.org/10.2140/pjm.1969.30.367
  8. H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274-1291. https://doi.org/10.1016/j.jmaa.2016.09.018
  9. D. W. Boyd, J. S. W. Wong, An extension of Opial's inequality, J. Math. Anal. Appl., 19 (1967), 100-102. https://doi.org/10.1016/0022-247x(67)90024-8
  10. G. Farid, J. Pecaric, Opial type integral inequalities for fractional derivatives II, Fractional Differ. Calc., 2 (2) (2012), 139-155.
  11. G. Farid, A. U. Rehman, S. Ullah, A. Nosheen, M. Waseem, Y. Mehboob, Opial-type inequalities for convex functions and associated results in fractional calculus, Adv. Difference Equ., 2019 (2019), 2019:152. https://doi.org/10.1186/s13662-019-2089-1
  12. G. Farid, J. Pecaric, Opial type integral inequalities for fractional derivatives, Fractional Differ. Calc., 2 (1) (2012), 31-54.
  13. A. Ur. Rehman, G. Farid, J. Pecaric Mean value theorem associated to the differences of recent Opial-type inequalities and their fractional versions, Fractional Differ. Calc., 10 (2) (2020), 213-224.
  14. G. Farid, Existence of an integral operator and its consequences in fractional and conformable integrals, Open J. Math. Sci. 3 (2019), 210-216. https://doi.org/10.30538/oms2019.0064
  15. S. Habib, S. Mubeen, M. N. Naeem, Chebyshev type integral inequalities for generalized k-fractional conformable integrals, J. Inequal. Spec. Funct., 9 (4) (2018), 53-65.
  16. F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Difference Equ., 2017 (2017), 247pp. https://doi.org/10.1186/s13662-017-1306-z
  17. Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville k-Fractional Integrals Associated With Ostrowski Type Inequalities and Error Bounds of Hadamard Inequalities, IEEE Access, 6 (2018), 64946-64953. https://doi.org/10.1109/access.2018.2878266
  18. T. U. Khan, M. A. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378-389. https://doi.org/10.1016/j.cam.2018.07.018
  19. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, North-Holland Mathematics studies, 204, Elsevier, New York-London, 2006.
  20. D. S. Mitrinovic, J. E. Pecaric, Generalization of two inequalities of Godunova and Levin, Bull. Polish Acad. Sci. Math., 36 (1988), 645-648.
  21. S. Mubeen, G. M. Habibullah, k-fractional integrals and applications, Int. J. Contemp. Math. Sci., 7 (2012), 89-94.
  22. Z. Opial, Sur une inegalite, Ann. Polon. Math., 8 (1960), 29-32. https://doi.org/10.4064/ap-8-1-29-32
  23. B. G. Pachpatte, On Opial-type integral inequalities, J. Math. Anal. Appl., 120 (1986), 547-556. https://doi.org/10.1016/0022-247X(86)90176-9
  24. B. G. Pachpatte, A note on generalization Opial type inequalities, Tamkang J. Math., 24 (1993), 229-235. https://doi.org/10.5556/j.tkjm.24.1993.4494
  25. J. Pecaric , F. Proschan, Y. C. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Inc., (1992).
  26. M. Z. Sarikaya, M. Dahmani, M. E. Kiris, F. Ahmad, (k, s)-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat., 45 (1) (2016), 77-89. doi:10.15672/HJMS.20164512484.

Cited by

  1. On Opial-Type Inequalities for Superquadratic Functions and Applications in Fractional Calculus vol.2021, 2021, https://doi.org/10.1155/2021/6379883