• 제목/요약/키워드: Generalized Pareto distribution

검색결과 64건 처리시간 0.025초

CHARACTERIZATIONS OF PARETO, WEIBULL AND POWER FUNCTION DISTRIBUTIONS BASED ON GENERALIZED ORDER STATISTICS

  • Ahsanullah, Mohammad;Hamedani, G.G.
    • 충청수학회지
    • /
    • 제29권3호
    • /
    • pp.385-396
    • /
    • 2016
  • Characterizations of probability distributions by different regression conditions on generalized order statistics has attracted the attention of many researchers. We present here, characterization of Pareto and Weibull distributions based on the conditional expectation of generalized order statistics extending the characterization results reported by Jin and Lee (2014). We also present a characterization of the power function distribution based on the conditional expectation of lower generalized order statistics.

Moment of the ratio and approximate MLEs of parameters in a bivariate Pareto distribution

  • Kim, Jungdae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권6호
    • /
    • pp.1213-1222
    • /
    • 2012
  • We shall derive the moment of the ratio Y/(X + Y) and the reliability P(X < Y ), and then observe the skewness of the ratio in a bivariate Pareto density function of (X, Y). And we shall consider an approximate MLE of parameters in the bivariate Pareto density function.

A COMPARATIVE EVALUATION OF THE ESTIMATORS OF THE 2-PARAMETER GENERALIZED PARETO DISTRIBUTION

  • Singh, V.P.;Ahmad, M.;Sherif, M.M.
    • Water Engineering Research
    • /
    • 제4권3호
    • /
    • pp.155-173
    • /
    • 2003
  • Parameters and quantiles of the 2-parameter generalized Pareto distribution were estimated using the methods of regular moments, modified moments, probability weighted moments, linear moments, maximum likelihood, and entropy for Monte Carlo-generated samples. The performance of these seven estimators was statistically compared, with the objective of identifying the most robust estimator. It was found that in general the methods of probability-weighted moments and L-moments performed better than the methods of maximum likelihood estimation, moments and entropy, especially for smaller values of the coefficient of variation and probability of exceedance.

  • PDF

일반화 파레토 모형에서의 베이지안 예측 (A Bayesian Prediction of the Generalized Pareto Model)

  • 판허;손중권
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.1069-1076
    • /
    • 2014
  • 기후 온난화의 한 현상으로 받아들여지는 집중호우로 인한 관심이 늘어난 만큼 강우량에 대한 예측 모형이 필요하다. 이러 환경 문제를 다룰 때, 모형을 설정하는 방법 중에 하나로 일반화 파레토 모형을 활용하는 연구가 이루어지고 있다. 본 논문에서는 서울특별시에 대한 1973년부터 2011년까지 매 7월 일별강우량 자료를 가지고 일반화 파레토 모형을 사용하여 강우량의 임계값(70mm) 이상의 분포가 어떻게 되는지 연구한다. 모수의 사전분포는 감마분포랑 역감마분포를 정의하고, 또는 제프리의 정보가 없는 사전분포를 두고, 깁스 표본방법을 통해 베이지안 사후예측분포를 구하고 얻어진 결과를 비교해 본다.

Non-Gaussian analysis methods for planing craft motion

  • Somayajula, Abhilash;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.293-308
    • /
    • 2014
  • Unlike the traditional displacement type vessels, the high speed planing crafts are supported by the lift forces which are highly non-linear. This non-linear phenomenon causes their motions in an irregular seaway to be non-Gaussian. In general, it may not be possible to express the probability distribution of such processes by an analytical formula. Also the process might not be stationary or ergodic in which case the statistical behavior of the motion to be constantly changing with time. Therefore the extreme values of such a process can no longer be calculated using the analytical formulae applicable to Gaussian processes. Since closed form analytical solutions do not exist, recourse is taken to fitting a distribution to the data and estimating the statistical properties of the process from this fitted probability distribution. The peaks over threshold analysis and fitting of the Generalized Pareto Distribution are explored in this paper as an alternative to Weibull, Generalized Gamma and Rayleigh distributions in predicting the short term extreme value of a random process.

Prediction of Extreme Sloshing Pressure Using Different Statistical Models

  • Cetin, Ekin Ceyda;Lee, Jeoungkyu;Kim, Sangyeob;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권4호
    • /
    • pp.185-194
    • /
    • 2018
  • In this study, the extreme sloshing pressure was predicted using various statistical models: three-parameter Weibull distribution, generalized Pareto distribution, generalized extreme value distribution, and three-parameter log-logistic distribution. The estimation of sloshing impact pressure is important in design of liquid cargo tank in severe sea state. In order to get the extreme values of local impact pressures, a lot of model tests have been carried out and statistical analysis has been performed. Three-parameter Weibull distribution and generalized Pareto distribution are widely used as the statistical analysis method in sloshing phenomenon, but generalized extreme value distribution and three-parameter log-logistic distribution are added in this study. Additionally, statistical distributions are fitted to peak pressure data using three different parameter estimation methods. The data were obtained from a three-dimensional sloshing model text conducted at Seoul National University. The loading conditions were 20%, 50%, and 95% of tank height, and the analysis was performed based on the measured impact pressure on four significant panels with large sloshing impacts. These fittings were compared by observing probability of exceedance diagrams and probability plot correlation coefficient test for goodness-of-fit.

Poisson-Generalized Pareto 분포를 이용한 폭풍해일 빈도해석 (Frequency analysis of storm surge using Poisson-Generalized Pareto distribution)

  • 김태정;권현한;신영석
    • 한국수자원학회논문집
    • /
    • 제52권3호
    • /
    • pp.173-185
    • /
    • 2019
  • 한반도는 지형학적 요건으로 인하여 태풍과 관련된 재난이 매년 발생하여 막대한 피해를 유발하고 있다. 태풍 내습시 폭풍해일과 집중호우가 동시에 발생한다면 해안지역의 침수피해는 더욱 증가할 것으로 사료된다. 이러한 관점에서 태풍과 폭풍해일의 상호의존성을 정량적으로 규명하는 것은 해안지역의 재해분석에 필수적이다. 본 연구에서는 Bayesian 기법을 기반으로 절점기준을 초과하는 임계값의 초과확률을 산정하기 위하여 Poisson 분포와 Generalized-Pareto 분포를 이용한 Poisson-GP 폭풍해일 빈도해석 기법을 개발하였다. 본 연구를 통하여 개발된 Poisson-GP 폭풍해일 빈도해석 기법은 설계해수면의 불확실성을 정량적으로 제시하였으며 해안지역의 폭풍해일 관련 방재기술 향상에 기여할 것으로 판단된다.

GPD 모형 산정을 위한 부분시계열 자료의 임계값 산정방법 비교 (Comparison of Methods of Selecting the Threshold of Partial Duration Series for GPD Model)

  • 엄명진;조원철;허준행
    • 한국수자원학회논문집
    • /
    • 제41권5호
    • /
    • pp.527-544
    • /
    • 2008
  • GPD 모형은 수문학 극치확률량 해석에 주로 적용되어 왔다. 극치 통계의 주목적은 드문 사상의 예측이며, 주요 문제점으로는 임계값 또는 임계값 초과치들에 대한 정확한 산정방법이 없어 그 추정이 매우 어렵다는 것이다. 본 연구에서는 임계값 또는 임계값 초과치들을 산정하기 위하여 4가지 방법을 적용하였다. 그 비교를 위하여 GPD 모형에 적용하여 7개의 지속시간(1, 2, 3, 6, 12, 18 및 24시간)과 10개의 재현기간(2, 3, 5, 10, 20, 30, 50, 70, 80 및 100년)에 대한 매개변수 및 Quantile을 추정하였다. 3변수 GPD의 매개변수 및 Quantile을 추정하기 위하여 MOM, ML과 PWM을 적용하였다. 적합도를 추정하기 위하여 K-S, CVM 및 A-D 검정을 수행하였고 Monte Carlo 실험으로 상대 제곱근오차를 산정하였다. 이러한 방법들을 이용하여 임계값 산정방법들을 비교하여 최적화된 방법을 추정하였다.

Extreme Value Analysis of Statistically Independent Stochastic Variables

  • Choi, Yongho;Yeon, Seong Mo;Kim, Hyunjoe;Lee, Dongyeon
    • 한국해양공학회지
    • /
    • 제33권3호
    • /
    • pp.222-228
    • /
    • 2019
  • An extreme value analysis (EVA) is essential to obtain a design value for highly nonlinear variables such as long-term environmental data for wind and waves, and slamming or sloshing impact pressures. According to the extreme value theory (EVT), the extreme value distribution is derived by multiplying the initial cumulative distribution functions for independent and identically distributed (IID) random variables. However, in the position mooring of DNVGL, the sampled global maxima of the mooring line tension are assumed to be IID stochastic variables without checking their independence. The ITTC Recommended Procedures and Guidelines for Sloshing Model Tests never deal with the independence of the sampling data. Hence, a design value estimated without the IID check would be under- or over-estimated because of considering observations far away from a Weibull or generalized Pareto distribution (GPD) as outliers. In this study, the IID sampling data are first checked in an EVA. With no IID random variables, an automatic resampling scheme is recommended using the block maxima approach for a generalized extreme value (GEV) distribution and peaks-over-threshold (POT) approach for a GPD. A partial autocorrelation function (PACF) is used to check the IID variables. In this study, only one 5 h sample of sloshing test results was used for a feasibility study of the resampling IID variables approach. Based on this study, the resampling IID variables may reduce the number of outliers, and the statistically more appropriate design value could be achieved with independent samples.

3변수 확률분포에 의한 설계강우량 추정 (Estimation of Design Rainfall Using 3 Parameter Probability Distributions)

  • 이순혁;맹승진;류경식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.595-598
    • /
    • 2004
  • This research seeks to derive the design rainfalls through the L-moment with the test of homogeneity, independence and outlier of data on annual maximum daily rainfall at 38 rainfall stations in Korea. To select the appropriate distribution of annual maximum daily rainfall data by the rainfall stations, Generalized Extreme Value (GEV), Generalized Logistic (GLO), Generalized Pareto (GPA), Generalized Normal (GNO) and Pearson Type 3 (PT3) probability distributions were applied and their aptness were judged using an L-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test. Parameters of appropriate distributions were estimated from the observed and simulated annual maximum daily rainfall using Monte Carlo techniques. Design rainfalls were finally derived by GEV distribution, which was proved to be more appropriate than the other distributions.

  • PDF