References
- Adams, B.J. and Papa, F. (2000). Urban stormwater management planning with analytical probabilistic models, John wiley & Sons, Inc
- Choulakian, V. and Stephens, M.A. (2001). "Goodness-of-fit tests for the Generalized Pareto Distribution", Technometrics, Vol. 43, No. 4, pp. 478-484 https://doi.org/10.1198/00401700152672573
- Cunnane, C. (1973). "A particular comparison of annual maxima and partial duration series methods of flood frequency prediction", Journal of hydrology, Vol. 18, pp. 257-271 https://doi.org/10.1016/0022-1694(73)90051-6
- Danielsson, J., and Haan, L. de, Peng, L. and de Vries, C.G. (2001). "Using a bootstrap method to choose the sample fraction in the tail index estimation", Journal of Mutivariate Analysis, Vol. 76, pp. 226-248 https://doi.org/10.1006/jmva.2000.1903
- Drees, H. and Kaufmann, E. (1998). "Selecting the optimal sample fraction in univariate extreme value estimation", Stoch. Proc. and Appl., Vol. 75, pp. 149-172 https://doi.org/10.1016/S0304-4149(98)00017-9
- Dutta, K. and Perry, J. (2007). A Tale of Tails An Empirical Analysis of Loss Distribution Models for Estimating Operational Risk Capital, Working Papers, No.06-13, Federal Reserve Bank of Boston
- Gomes, M.I. and Oliveira, O. (2001). "The bootstrap methodology in statistics of extremes-Choice of the optimal sample fraction", Extremes, Vol. 4, pp. 331-358 https://doi.org/10.1023/A:1016592028871
- Gomes, M.I. and Pestana, D. (2007). "A Sturdy Reduced-Bias Extreme Quantile (VAR) Estimator", Journal of the American Statistical Association, Vol. 102, No. 477, pp. 280-292 https://doi.org/10.1198/016214506000000799
- Hall, P. (1982). "On some simple estimates of an exponent of regular variation", Journal of Royal Statistical Society, pp. 37-42
- Hall, P. (1990). "Using bootstrap to estimate mean squared error and selecting parameter in nonparametric problems", Journal of Mutivariate Analysis, Vol. 32, pp. 177-203 https://doi.org/10.1016/0047-259X(90)90080-2
- Hall, P. and Welsh, A.H. (1985). "Adaptive estimates of parameters of regular variation", Ann. Statist., Vol. 13, pp. 331-341 https://doi.org/10.1214/aos/1176346596
- Heaney, J.P., Huber, W.C., Medina, M.A., Jr., Murphy, M.P., Nix, S.J. and Hasan, S.M. (1977). Nationwide Assessment of Combined Sewer Overflows and Urban Stormwater Discharges: Vol. II, Cost Assessment, EPA-600/2-77-064, U.S. Environmental Protection Agency, Cincinnati, OH
- Hill, B.M. (1975). "A simple general approach to inference about the tail of a distribution", Ann. Statist., Vol. 3, pp. 1163-1174 https://doi.org/10.1214/aos/1176343247
- Hogg, R.V. and Tanis, E.A. (1988). Probability and statistical inference, 3rd edition, Macmillan Publishing Co., New York, NY
- Hosking, J.R.M. and Wallis, J.R. (1987). "Parameter and Quantile Estimation for the Generalized Pareto Distribution", Technometrics, Vol. 29, No. 3, pp. 339-349 https://doi.org/10.2307/1269343
- Howard, C. and Associates, Ltd. (1979). Analysis and Use of Urban Rainfall in Canada, Report EPS 3-WP-79-4, Water Pollution Control Directorate, Environmental Protection Service, Environment Canada, Ottawa, Ontario
- Landwehr, J.M., Matalas, N.C., and Wallis, J.R. (1979). "Estimation of Parameters and Quantiles of Wakeby Distributions", Water Resources Research, Vol. 15, pp. 1361-1379 https://doi.org/10.1029/WR015i006p01361
- Madsen, H., Rasmussen, P.F. and Rosbjerg, D. (1997). "Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events-1. At-site modeling", Water resources research, Vol. 33, No. 4, pp. 747-757 https://doi.org/10.1029/96WR03848
- Madsen, H., Rosbjerg, D. and Harremoes (1994). "PDS-modeling and regional Bayesian estimation of extreme rainfalls", Nordic Hydrology, Vol. 25, No. 4, pp. 279-300 https://doi.org/10.2166/nh.1994.0009
- Moharram, S.H., Gosain, A.K. and Kapoor, P.N. (1993). "A Comparative Study for the Estimators of the Generalized Pareto Distribution" Journal of Hydrology, Vol. 150, pp. 169-185 https://doi.org/10.1016/0022-1694(93)90160-B
- Nix, S.J. (1994). Urban Stormwater Modeling and Simulation, Lewis Publishers, Boca Raton, FL
- Pickands, J. (1975). "Statistical inference using extreme order statistics", Ann. Statist., Vol. 3, pp. 119-131 https://doi.org/10.1214/aos/1176343003
- Rao, A.R. and Hamed, K.H. (2000). Flood frequency analysis, CRC Press, New York
- Rasmussen, P.F. and Rosbjerg, D. (1991). "Application of Bayesian principles in regional flood frequency estimation", in Advances in Water Resouces Technology, edited by G. Tsakiris, pp. 66-75
- Restrepo-Posada, P.J. and Eagleson, P.S. (1982). "Identification of independent rainstorms", Journal of Hydrology, Vol. 55, pp. 303-319 https://doi.org/10.1016/0022-1694(82)90136-6
- Rosbjerg, D., and Madsen H.(1992). “On the choice of threshold level in partial duration series.” Nordic Hydrological Conference, Alta, NHP Rep. 30, pp. 604-615
- Rosbjerg, D., Rasmussen, P.F. and Madsen, H. (1991). "Modeling of exceedances in partial duration series", Proceedings of the International Hydrology and Water Resources Symposium, pp. 755-760
- Singh, V.P. and Ahmad, M. (2004). "A comparative evaluation of the estimation of the three-parameter generalized pareto distribution", Journal of Statistical Computation and Simulation, Vol. 74, No. 2, pp. 91-106 https://doi.org/10.1080/0094965031000110579
- Weissman, I. (1978). "Estimation of Parameters and Large Quantiles Based on the k Largest Observation", Journal of the American Statistical Association, Vol. 73, pp. 812-815 https://doi.org/10.2307/2286285
- Willems, P., Guillou, A. and Beirlant, J. (2007). "Bias correction in hydrologic GPD based extreme value analysis by means of a slowly varying function", Journal of Hydrology, Vol. 338, pp. 221-236 https://doi.org/10.1016/j.jhydrol.2007.02.035
Cited by
- A Study on Optimal Time Distribution of Extreme Rainfall Using Minutely Rainfall Data: A Case Study of Seoul vol.45, pp.3, 2012, https://doi.org/10.3741/JKWRA.2012.45.3.275