• Title/Summary/Keyword: Generalized Net

Search Result 84, Processing Time 0.021 seconds

A Study on MRD Methods of A RAM-based Neural Net (RAM 기반 신경망의 MRD 기법에 관한 연구)

  • Lee, Dong-Hyung;Kim, Seong-Jin;Park, Sang-Moo;Lee, Soo-Dong;Ock, Cheol-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.9
    • /
    • pp.11-19
    • /
    • 2009
  • A RAM-based Neural Net(RBNN) which has multi-discriminators is more effective than RBNN with a discriminator. Experience Sensitive Cumulative Neural Network and 3-D Neuro System(3DNS) that accumulate the features point improved the performance of BNN, which were enabled to train additional and repeated patterns and extract a generalized pattern. In recognition process of Neural Net with multi-discriminator, the selection of class was decided by the value of MRD which calculates the accumulated sum of each class. But they had a saturation problem of its memory cells caused by learning volume increment. Therefore, the decision of MRD has a low performance because recognition rate is decreased by saturation. In this paper, we propose the method which improve the MRD ability. The method consists of the optimum MRD and the matching ratio prototype to generalized image, the cumulative filter ratio, the gap of prototype response MRD. We experimented the performance using NIST database of NIST without preprocessor, and compared this model with 3DNS. The proposed MRD method has more performance of recognition rate and more stable system for distortion of input pattern than 3DNS.

A Dynamic Three Dimensional Neuro System with Multi-Discriminator (다중 판별자를 가지는 동적 삼차원 뉴로 시스템)

  • Kim, Seong-Jin;Lee, Dong-Hyung;Lee, Soo-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.7
    • /
    • pp.585-594
    • /
    • 2007
  • The back propagation algorithm took a long time to learn the input patterns and was difficult to train the additional or repeated learning patterns. So Aleksander proposed the binary neural network which could overcome the disadvantages of BP Network. But it had the limitation of repeated learning and was impossible to extract a generalized pattern. In this paper, we proposed a dynamic 3 dimensional Neuro System which was consisted of a learning network which was based on weightless neural network and a feedback module which could accumulate the characteristic. The proposed system was enable to train additional and repeated patterns. Also it could be produced a generalized pattern by putting a proper threshold into each learning-net's discriminator which was resulted from learning procedures. And then we reused the generalized pattern to elevate the recognition rate. In the last processing step to decide right category, we used maximum response detector. We experimented using the MNIST database of NIST and got 99.3% of right recognition rate for training data.

Estimation of slamming coefficients on local members of offshore wind turbine foundation (jacket type) under plunging breaker

  • Jose, Jithin;Choi, Sung-Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.624-640
    • /
    • 2017
  • In this paper, the slamming coefficients on local members of a jacket structure under plunging breaker are studied based on numerical simulations. A 3D numerical model is used to investigate breaking wave forces on the local members of the jacket structure. A wide range of breaking wave conditions is considered in order to get generalized slamming coefficients on the jacket structure. In order to make quantitative comparison between CFD model and experimental data, Empirical Mode Decomposition (EMD) is employed for obtaining net breaking wave forces from the measured response, and the filtered results are compared with the computed results in order to confirm the accuracy of the numerical model. Based on the validated results, the slamming coefficients on the local members (front and back vertical members, front and back inclined members, and side inclined members) are estimated. The distribution of the slamming coefficients on local members is also discussed.

GENERALIZED NET MODEL OF INTRANET IN AN ABSTRACT UNIVERSITY WITH CURRENT ESTIMATIONS (II)

  • Langova-Orozova Daniela;Sotirova Evdokia;Atanassov Krassimir;Melo-Pinto Pedro;Kim Taekyun;Park Dal-Won;Kim Yung-Hwan;Jang Lee-Chae;Kang Dong-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.382-388
    • /
    • 2005
  • We apply estimations of the intuitionistic fuzzy sets on the basis of which some amendments nay be undertaken. In particular, this paper describes the process of working out a university classes schedule.

Simulation of the single-cylinder 2-stroke cycle compression ignition engine (단기통 2사이클 압축점화기관의 시뮬레이션)

  • 유병철;김정순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.62-74
    • /
    • 1986
  • The simulation of power cycle and unsteady gas exchange processes in the inlet and exhaust systems of the single-cylinder 2-stroke cycle compression ignition engine was studied in this paper. In power cycle process, the single-zone model proposed by Whitehouse and Way was used, and the convective and radiative heat transfer from cylinder contents to surroundings was considered. To solve the equations for gas exchange process, the generalized method of characteristics including area change, friction, heat transfer and entropy gradients was used. Also with the path line calculation, the entropy change along the path line and the variation of specific heat due to the change of temperature and the composition of cylinder gas were considered. As a result of the simulation, the change of pressure and temperature in the cylinder against the crank angle, the rate of net heat release, and the change of properties at each point in the inlet and exhaust pipe against the crank angle were obtained. The engine performances under various operating conditions were also calculated.

  • PDF

Multilevel acceleration of scattering-source iterations with application to electron transport

  • Drumm, Clif;Fan, Wesley
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1114-1124
    • /
    • 2017
  • Acceleration/preconditioning strategies available in the SCEPTRE radiation transport code are described. A flexible transport synthetic acceleration (TSA) algorithm that uses a low-order discrete-ordinates ($S_N$) or spherical-harmonics ($P_N$) solve to accelerate convergence of a high-order $S_N$ source-iteration (SI) solve is described. Convergence of the low-order solves can be further accelerated by applying off-the-shelf incomplete-factorization or algebraic-multigrid methods. Also available is an algorithm that uses a generalized minimum residual (GMRES) iterative method rather than SI for convergence, using a parallel sweep-based solver to build up a Krylov subspace. TSA has been applied as a preconditioner to accelerate the convergence of the GMRES iterations. The methods are applied to several problems involving electron transport and problems with artificial cross sections with large scattering ratios. These methods were compared and evaluated by considering material discontinuities and scattering anisotropy. Observed accelerations obtained are highly problem dependent, but speedup factors around 10 have been observed in typical applications.

Recent developments in the GENESIS code based on the Legendre polynomial expansion of angular flux method

  • Yamamoto, Akio;Giho, Akinori;Endo, Tomohiro
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1143-1156
    • /
    • 2017
  • This paper describes recent development activities of the GENESIS code, which is a transport code for heterogeneous three-dimensional geometry, focusing on applications to reactor core analysis. For the treatment of anisotropic scattering, the concept of the simplified Pn method is introduced in order to reduce storage of flux moments. The accuracy of the present method is verified through a benchmark problem. Next, the iteration stability of the GENESIS code for the highly voided condition, which would appear in a severe accident (e.g., design extension) conditions, is discussed. The efficiencies of the coarse mesh finite difference and generalized coarse mesh rebalance acceleration methods are verified with various stabilization techniques. Use of the effective diffusion coefficient and the artificial grid diffusion coefficients are found to be effective to stabilize the acceleration calculation in highly voided conditions.

A new dead-time determination method for gamma-ray detectors using attenuation law

  • Akyurek, T.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4093-4097
    • /
    • 2021
  • This study presents a new dead-time measurement method using the gamma attenuation law and generalized dead-time models for nuclear gamma-ray detectors. The dead-time of the NaI(Tl) detection system was obtained to validate the new dead-time determination method using very thin lead and polyethylene absorbers. Non-paralyzing dead-time was found to be 8.39 ㎲, and paralyzing dead-time was found to be 8.35 ㎲ using lead absorber for NaI(Tl) scintillator detection system. These dead-time values are consistent with the previously reported dead-time values for scintillator detection systems. The gamma build-up factor's contribution to the dead-time was neglected because a very thin material was used.

Advanced two-level CMFD acceleration method for the 3D whole-core high-fidelity neutron adjoint transport calculation

  • Zhu, Kaijie;Hao, Chen;Xu, Yunlin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.30-43
    • /
    • 2021
  • In the 2D/1D method, a global adjoint CMFD based on the generalized equivalence theory is built to synthesize the 2D radial MOC adjoint and 1D axial NEM adjoint calculation and also to accelerate the iteration convergence of 3D whole-core adjoint transport calculation. Even more important, an advanced yet accurate two-level (TL) CMFD acceleration technique is proposed, in which an equivalent one-group adjoint CMFD is established to accelerate the multi-group adjoint CMFD and then to accelerate the 3D whole-core adjoint transport calculation efficiently. Based on these method, a new code is developed to perform 3D adjoint neutron flux calculation. Then a set of VERA and C5G7 benchmark problems are chosen to verify the capability of the 3D adjoint calculations and the effectiveness of TL CMFD acceleration. The numerical results demonstrate that acceptable accuracy of 2D/1D adjoint calculations and superior acceleration of TL CMFD are achievable.

A novel analytical solution of the deformed Doppler broadening function using the Kaniadakis distribution and the comparison of computational efficiencies with the numerical solution

  • Abreu, Willian V. de;Martinez, Aquilino S.;Carmo, Eduardo D. do;Goncalves, Alessandro C.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1471-1481
    • /
    • 2022
  • This paper aims to present a new method for obtaining an analytical solution for the Kaniadakis Doppler broadening (KDB) function. Also, in this work, we report the computational efficiencies of this solution compared with the numerical one. The solution of the differential equation achieved in this paper is free of approximations and is, consequently, a more robust methodology for obtaining an analytical representation of ψk. Moreover, the results show an improvement in efficiency using the analytical approximation, indicating that it may be helpful in different applications that require the calculation of the deformed Doppler broadening function.