DOI QR코드

DOI QR Code

Multilevel acceleration of scattering-source iterations with application to electron transport

  • Drumm, Clif (Radiation Effects Theory Department, Sandia National Laboratories) ;
  • Fan, Wesley (Radiation Effects Theory Department, Sandia National Laboratories)
  • Received : 2017.06.01
  • Accepted : 2017.08.13
  • Published : 2017.09.25

Abstract

Acceleration/preconditioning strategies available in the SCEPTRE radiation transport code are described. A flexible transport synthetic acceleration (TSA) algorithm that uses a low-order discrete-ordinates ($S_N$) or spherical-harmonics ($P_N$) solve to accelerate convergence of a high-order $S_N$ source-iteration (SI) solve is described. Convergence of the low-order solves can be further accelerated by applying off-the-shelf incomplete-factorization or algebraic-multigrid methods. Also available is an algorithm that uses a generalized minimum residual (GMRES) iterative method rather than SI for convergence, using a parallel sweep-based solver to build up a Krylov subspace. TSA has been applied as a preconditioner to accelerate the convergence of the GMRES iterations. The methods are applied to several problems involving electron transport and problems with artificial cross sections with large scattering ratios. These methods were compared and evaluated by considering material discontinuities and scattering anisotropy. Observed accelerations obtained are highly problem dependent, but speedup factors around 10 have been observed in typical applications.

Keywords

References

  1. S. Pautz, C. Drumm, W. Bohnhoff, W. Fan, Software engineering in the SCEPTRE code, in: Proc. M&C 2009, American Nuclear Society, La Grange Park, IL, 2009.
  2. M. Heroux, R. Bartlett, V.H.R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, A. Williams, An Overview of Trilinos (SAND Rep. No. SAND2003-2927), Sandia National Laboratories, Albuquerque, NM, 2003.
  3. A. Prokopenko, C. Siefert, J. Hu, M. Hoemmen, A. Klinvex, Ifpack2 User's Guide 1.0 (Trilinos Version 12.6; SAND Rep. No. SAND2016-5338), Sandia National Laboratories, Albuquerque, NM, 2016.
  4. A. Prokopenko, J. Hu, T. Wiesner, C. Siefert, R. Tuminaro, MueLu User's Guide 1.0 (SAND Rep. No. SAND2014-18874), Sandia National Laboratories, Albuquerque, NM, 2014.
  5. G.L. Ramone, M. Adams, P. Nowak, A transport synthetic acceleration method for transport iterations, Nucl. Sci. Eng. 125 (1997) 257. https://doi.org/10.13182/NSE97-A24274
  6. B. Patton, J. Holloway, Application of Krylov subspace iterative methods to the slab geometry transport equation, in: Proc. Radiat. Prot. Shielding 1996, American Nuclear Society, La Grange Park, IL, 1996, pp. 384-389.
  7. B. Patton, J. Holloway, Some remarks on GMRES for transport theory, in: Proc. M&C 2003, American Nuclear Society, La Grange Park, IL, 2003.
  8. J. Warsa, T. Wareing, J. Morel, Krylov iterative methods and the degraded effectiveness of diffusion synthetic acceleration for multidimensional $$S_N$$ calculations in problems with material discontinuities, Nucl. Sci. Eng. 147 (2004) 218. https://doi.org/10.13182/NSE02-14
  9. J. Morel, Basic Krylov methods with application to transport, in: Proc. M&C 2005, American Nuclear Society, La Grange Park, IL, 2005.
  10. J. Warsa, T. Wareing, J. Morel, Fully consistent diffusion synthetic acceleration of linear discontinuous $$S_N$$ transport discretizations on three-dimensional unstructured tetrahedral meshes, Nucl. Sci. Eng. 141 (2002) 236-251. https://doi.org/10.13182/NSE141-236
  11. M. Adams, E. Larsen, Fast iterative methods for discrete-ordinates particle transport calculations, Prog. Nucl. Energy 40 (2002) 3. https://doi.org/10.1016/S0149-1970(01)00023-3
  12. B. Turcksin, J. Ragusa, Discontinuous diffusion synthetic acceleration for $$S_N$$ transport on 2D arbitrary polygonal meshes, J. Comp. Phys. 274 (2014) 356-369. https://doi.org/10.1016/j.jcp.2014.05.044
  13. B. Turcksin, J. Ragusa, J. Morel, Angular multigrid preconditioner for Krylovbased solution techniques applied to the SN equations with highly forwardpeaked scattering, Trans. Theor. Stat. Phys. 41 (2012) 1-22. https://doi.org/10.1080/00411450.2012.672944
  14. C. Drumm, Spherical harmonics ($$P_N$$) methods in the SCEPTRE radiation transport code, in: Proc. M&C 2015, American Nuclear Society, La Grange Park, IL, 2015 [CD-ROM].
  15. C. Drumm, W. Fan, S. Pautz, Phase-space finite elements in a least-squares solution of the transport equation, in: Proc. M&C 2013, American Nuclear Society, La Grange Park, IL, 2013.
  16. Y. Saad, M. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Sci. Stat. Comput. 7 (1986) 856. https://doi.org/10.1137/0907058
  17. C. Drumm, W.C. Fan, L. Lorence, J.L. Powell, An analysis of the extendedtransport correction with application to electron beam transport, Nucl. Sci. Eng. 155 (2007) 355. https://doi.org/10.13182/NSE07-A2668
  18. L. Lorence, J. Morel, G. Valdez, Physics Guide to CEPXS: a Multigroup Coupled Electron-photon Cross-section Generating Code Version 1.0 (SAND Rep. No. SAND89-1685), Sandia National Laboratories, Albuquerque, NM, 1989.
  19. J. Amelang, C. Trott, H. Edwards, Kokkos Tutorial (SAND Rep. No. SAND2015-9620C), Sandia National Laboratories, Albuquerque, NM, 2015.