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1. Introduction

Over the years, several theories have been developed in the field
of statistical mechanics and kinetic theory. Most of them start from
the assumption of a specific form of entropy: the Boltz-
mann—Gibbs—Shannon theory, which, in turn, leads to the
Maxwell-Boltzmann exponential distribution [1,2].

Despite this, it is known that the Maxwell-Boltzmann statistic
and its standard exponential function cannot describe relativistic
phenomena of particle systems adequately like, for instance, the
case of the cosmic rays flux in a given energy range and the density
of rain events versus the event size [3].

Within this context, the Kaniadakis, or k-deformed statistic, was
developed. It is a non-extensive generalization of the ordinary
Boltzmann—Gibbs—Shannon (BGS) mechanics statistics based on
the kinetical interaction principle (KIP). This new distribution
presents the parameter «, expressing the level of deformation
regarding the standard statistic. Hence, when « tends towards zero,
the expression returns to BGS mechanics.

According to Kaniadakis [3], the deformation parameter «
emerges naturally within Einstein's special relativity, implying that
this term is a purely relativistic effect. In this context, the author
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determined the value of « within the special relativity context as
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where T is the temperature of the system, kg the Boltzmann con-
stant, m the rest mass of the particles, and c light speed.

When considering a relativistic particle systems problem,
assuming a nonexponential distribution function with power law
tails is necessary. In order to do that, a generalization of the
Boltzmann—Gibbs—Shannon distribution is needed. Consequently,
it is also required to replace the ordinary exponential function
applied in the standard distribution by a one-parameter general-
ized exponential, exp,, which is given by Ref. [4]:

epr(x)z(\/l +k2x2 + KX) 1/’<, (2)

and which obeys the following condition [4]:

expy(X)-expe( — x) = 1. (3)

One of the possible applications of this new theory is to consider
an also new deformed statistical k-distribution. It can be repre-
sented, for instance, in terms of the nuclei velocities in a nuclear
reactor [5—7]:
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2
FAV.T) = A(k)exp, < _ %) , (4)

where M is the nucleus mass, V is the velocity of the target nucleus,
T is the temperature of the medium and A(x) is defined as:

1 .3
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Consequently, with this generalized quasi-Gaussian statistics, it
is possible to describe phenomena that may not be accurately
described using Maxwell—Boltzmann statistics, such as the phys-
ical phenomena outside thermal equilibrium [5] and systems with
long-term time correlations [8].

In recent years, Kaniadakis deformed statistics have been used
in several scientific areas. Among them, we can mention works in
astrophysics [9], quark-gluon plasma [10], game theory [11], error
theory [12], information theory [13], random matrices [14], fractal
systems [15], dusty-type plasmas [16], gravitational physics [17,18],
epidemiology [19] and reactor physics [5—7,20].

A valuable use of Kaniadakis deformed statistics is in Voigt
profile applications. A standard Voigt profile is a probability dis-
tribution resulting from the convolution of the Cauchy—Lorentz
distribution and the Gaussian distribution. It has been extensively
studied in the literature, having applications in a broad spectrum of
areas, like astrophysics [21], non-crystalline solids [22], computa-
tional and applied mathematics [23], high energy physics [24],
applied crystallography [25] and nuclear reactor physics [5—7,20].

However, the standard Voigt profile is only valid for physical
systems in thermal equilibrium [2]. With the use of the Kaniadakis
distribution, we can consequently obtain a generalized formulation.

In practical applications, the processing time of numerical so-
lutions can be very high due to iterative calculations with a very
refined mesh. Thereby, an analytical solution of the same function
can save time when inserted into a complex system in the most
diverse areas, for example, cross-section data generation for nu-
clear reactor designs [7,26]. As a consequence, analytical solutions
have been continuously studied in the area [27,28].

Hence, this paper presents a novel approach for obtaining an
analytical solution for the deformed Voigt profile function using the
Kaniadakis distribution.

Also, in this work, we report the computational efficiencies of
these two different solutions of the deformed Voigt profile func-
tion, numerical and analytical, employing the use of the Kaniadakis
distribution. In the reactor physics area, this function is also known
as the deformed Doppler broadening function [7,26].

In the next section, the numerical formulation of the deformed
Doppler broadening function will be presented using the Kania-
dakis distribution. Section 3 describes a new analytical formulation
of the same function and Section 4 offers the CPU processing time
for both methods and the discussion. Finally, Section 5 presents the
conclusions of the paper.

(5)

2. Numerical solution for the deformed Voigt profile

Through the Bethe—Placzek approximation, it is possible to
present the deformed Doppler broadening function considering the
Kaniadakis distribution [5]:

3
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where:

r
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I' is the total width of the resonance as measured in the labo-
ratory coordinates;

A is the mass number;

Ey is the resonant energy;

&= (7)

2
=g (Ecm — Eo); (8)

Eqy is the center-of-mass energy;
E is the energy of the incident neutron;
2

x=g (E — Eo); ()

V1+k222 — K%z
ieXp(2)="—1 5 exP(2) (10)
2x-y)
z 2 (11)
1 T+
B(x) = (2|'<|)f<1 +§3\K|) — - (12)

To solve equation (6) numerically, we used Python and Visual
Studio code editor.

In nuclear reactor physics applications, we can associate £ with
medium temperature while associating x directly with neutron
energy, as represented by equations (7) and (9).

To implement the most efficient numerical solution possible in
terms of CPU efficiency, we chose the Simpson method, the most
straightforward approach in the literature for obtaining the
deformed Doppler broadening function using the Kaniadakis
distribution.

Approximating the integrand f(y) of equation (6),

|

with a collection of parabolas subtended across three successive
data mesh points, corresponding to a second-degree polynomial, it
leads to Simpson's formula, denoted by Sy(f). By using Lagrange's
method to construct the polynomial interpolation, the integral of
equation (6) may be written as [29]:

—(x—-y)?

ﬂw—T%ﬁmm{ : (13)

SnIf ()] 5% Zz:[f(bifz) +4f (¥2i1) + fy2i)l, (14)
b

where N is an even number of subintervals of [a, b], Ay = (b — a)/N
and y; = a + iAy [29]. To obtain the reference values for the nu-
merical solution of ¥, [2,3] with less computational time, we as-
sume, in equation (5), —co— — 200, +c0—200, and N = 1000 in
equation (14) which are the minimum settings to obtain the
Benchmark results [7,30]. The precision variance according to the
value of N is illustrated in Table 1:
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Table 1
Values of N versus the percentage error concerning the Benchmark (x =0 and
£ =0.05).

N value % Error time (s)
300 0.04058 4.67% 155
500 0.04203 1.27% 165
1000 0.04257 0.00% 214
Benchmark 0.04257

3. Analytical solution for the deformed Doppler broadening
function

A recently proposed approximated analytical method for the
deformed Doppler broadening function, an alternative to equation
(6), was obtained from the proposition of two different methods,
depending on their position in the |x-£|domain. The first one, which
we call method 1, and which applies to the domain |x-£| <6, arises
from the proposition of a differential equation and its consequent
solution [7]. Method 2, which applies to the |x-£| > 6 domain, arises
from performing asymptotic expansions in Taylor series. This paper
proposes a new, more robust way to obtain the solution of the
homogeneous part of the differential equation obtained for the
method.

3.1. A new method for obtaining an analytical solution for |x-£| <6

One of the ways to obtain an analytical solution for the
deformed Doppler broadening function is by finding and solving
the following differential equation [6]:

5 2
DX 2 Mo 2 i + 222+ 2]y, 6.

0x2 ax
§4
d(k)B(k),
which returns to the standard solution, considering the
Maxwell—Boltzmann statistics when x—0:
PYEX) | o am,) L e, 2 _&
e+ Ex g2 Ben = e

The solutions for equations (15) and (16) have already been
successfully obtained in different papers [6,31,32], using series
expansion methods. However, in this paper, we propose an alter-
native mathematical process: changing the dependent variable to
obtain the solution of the homogeneous part of equation (15). Then,
we use the traditional parameter variation method to get the same
equation's particular solution. Finally, the combination of both
techniques results in an analytical solution.

The Frobenius method has already been used in recent works to
obtain the solution of the homogeneous part of the differential
equation for the deformed Doppler broadening function using the
standard Maxwell—Boltzmann distribution [32], as well as in the
case of the Kaniadakis distribution [6,7]. However, the application
of the Frobenius method makes only sense when solving differ-
ential equations with points of regular singularities, which is not
the case with differential equations (15) and (16) — even though, in
a way, that fact does not invalidate the application of the method to
such equations.

Despite being applicable, the use of the Frobenius method to
solve the homogeneous part of the differential equations (15) and
(16) means that we are forced to hypothetically admit that the
homogeneous solution of both equations was proportional to
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exp(*‘ ") Therefore, to eliminate the admissibility of such a

strong hypothesis, this work proposes an alternative solution for
the homogeneous part of equation (15) to eliminate the depen-
dence of the first-order derivative and, thus, reduce the differential
equation to the so-called normal form [26].

The homogeneous part of equation (15) can be written without
loss of generality as:

dxzw <x>+px<x>dw £ (0 + Qe (X) = (17)
where,

pe(x)=E2x (18)
and

qu()=8[2d(k) + %2 + 8] /4. (19)

It is also possible to note that & was taken as a parameter so that
there is no loss of generality, both in the case of the functions
pr(x)and qx(x) as well as in the case of the ordinary differential
equation (ODE) presented in equation (17).

According to Simmons [33], it is possible to represent any dif-
ferential equation similar to equation (15) by using the dependent
variable method, as follows:

2
dx?

The previous equation is also referred to in the literature as the
normal form of a second-order homogeneous differential equation

[33]. The normal form of equation (17) is achieved by the following
steps:

U o (X) + Qu(X)uz 4 (X) = 0. (20)

l//E,K(X) = uE‘K(X)v;:,K(X)7 (21)
so that:
e 0) = 12, 0) e () + U (6) S 30 (22)
and
d? d? d d
O ea0) = U () e (3042 Sz, (0 S0

0L @ & e (23)

By substituting equations (21)—(23) in the second-order ho-
mogeneous differential equation, equation (17), one can obtain the
following differential equation, after some algebra [33]:

:22u; (%) + Pe(x) %HEYK(X) + QuX)Uz, (x) = 0 (24)
where,
=y (2t + Prlea() (25)
and

0= ( 0+ D) 0+ qK<x>vg,K(x>) (26)
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Equation (25) can be reduced to the normal form by imposing

P¢(x) = 0 [33]:
2 )+ Pl () = 0 (27)

Equation (27), in turn, supports the following general solution:

UM@):Jmp(-?&Qym (28)
Consequently,

e 8) = —2peove (0 (29)

and

2

O a0 = el () — 3 Spi) (30)

Note that, from equations (25) and (26), it is possible to show
that the term Q«(x) is exclusively dependent on p,(x)and g« (x), such
that:

(31)

Therefore, based on the values previously defined for p,(x) and
qk(X) (sz and & [2d(k) + £2x2 4 52}/4), the functions v;,(x) and
Q«(x), can be explicitly determined through equations (17) and (27),
respectively:

2,2
veal0) = exp( =), (32)
and
2 4 2
Q(x) = 5«@+i—% (33)

Using the definition of d(k) =1 — k2, equation (33) takes the
following simplified form:
&g
4 2

Analyzing the term Q, it is possible to notice that it assumes
positive and negative values in such a way that:

Q = (34)

Qc > 0 when £ > V2« (35)

Qc <0 when £ < V2. (36)

As Qy is independent of x, equation (20) therefore presents the
following general solution, which can be expressed in two different
ways:

U (X) = wwos(%W) +w251n< m),
(37)
g (9 =mexp 5 \/T:z?@)

Combining equations (37) and (32), we obtain the solution of

(38)
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the homogeneous part of equation (15), so that:

22

Ve ()= (6,X) —exp <7 4X )

Jmcos (3 F-282) s musin(§ 7 -277)

(39)

From the homogeneous solution, it is possible to find a partic-
ular solution using the two linearly independent solutions of
equation (37):

¥1(6,X) = exp (*i"z) cos (’zf VE - 282 ); (40)
Va(6,x) = exp(‘i"z)sin (5yet22). (41)

By the parameter variation method, it is possible to determine a
particular solution, from the linearly independent solutions,
equations (40) and (41), as follows:

Yp(6,%) = u (X)Y1 (£, %) + pp ()Y (€, %),

where ¥ (£, x) and ¥, (£, x)functions represent linearly independent
solutions, equations (40) and (41), and functions p; (x) and u, (x) are
determined by the initial conditions.

Following the procedure proposed by the parameter variation
method, it is possible to derive:

(42)

O = D W (€0 + 11 () 1 B30 + X)W )

d
+ Ho(X) a%(ﬁ X).
(43)
In order to obtain the new representation of the differential
equation, we need to consider {uq (x)¥1(£,%) + &ua (x)¥2(,x) = 0

[33], then:
d d d
a‘//p = p1(x) a‘/’l (%) + ua(x) a‘//z (€ %). (44)
Differentiating with respect to x, we get the following:
d? d d d?
W‘//p = w1 g (€,%) + w1 (x) W% (€,%)
d d d? 4
+aﬂ2(x)a‘//2(gvx)+H2(X)Wl/’2(§7x)- (45)

By applying the derivatives calculated in equation (15), we get
the following:

2
D10 910+ (00 S0+ 0 Dy e 3

2
120 7 V20E0) + £ 1 00 G E0) + a0Vl

2
5 [2000 + 25 + 2y (091 .0 + (00 E.0)

(46)

The functions ¥ (£, x) and ¥, (£, x) are solutions of the associated
homogeneous, so that:
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4
100 1 €20+ S0 Sy e0 =5 (1-2) B0, (47)

With that, equation (47) and the previous imposition
Ly ()Y (8, X) + Lup (X)¥5(6,x) = 0, form the following system:

S0V G0 + g 6¥alE.x) = 0
54
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The term erf (x) is the so-called Gaussian error function, defined

as follows [34]:
2 X
“Pdt
NG [ecae
0

erf(x) = — (52)

From that, it is possible to write the particular solution as
follows:

a0 e €0+ S0 Ly = 5 (142 Blw) b BB V2P (7220
@) T4 2o 4
This system has a unique solution in {u; (x) and £u, (x), because x {1 (€.%) + Q(£,%) }, (53)
the Wronskian W(yq,¥,)(x)#0. The system can be solved by where
Cramer's rule: '
0 U VEx 0 Q1 (£,%) = sin(®)- | — (erf (Py)® - erf (Py) + erf (Py)x?
y g ¥aEn) y dyen g ~e(®2) )| &4
W= W M &Y ST W
(49)  @a(EX) = cos(®):| — (2erf(P3)® — 2erf (Py) — erf(Py)x?
2
where g = (1 - k2)B(x). By obtaining &y, (%.x), dy,(5.x) and +erf(Py) -+ erf (Po)i® —erf (Py) ) | (55)
calculating W (y1,y5), it is possible to obtain &u; (x) and fu, (x), so
that finally these terms are integrated with respect to x. This _ir2 [ed _9g2,2
leads to: Pi(§,x) = Eay 22 2 (56)
1 1 YR £2 22
,Ul(x):m Z\/E 73 KZ-B(K)-§~exp< 2 )
2erf (" -2 ) K2 — 2erf <' e 252K2> —erf <_i€2x HVE- 252/(2) «% + erf (—i&zx e ZEZKZ>
2t 2¢ 2¢ 2
(50)
*IEZX - /€4 _ 252K2 ) 7l-g2x _ /g4 . 252’(2
+erf 2 k* —erf 2
and
erf<—i§2x 1/ - 2§2K2> @ erf <—i§2x +/E - 2g2;<2>
i 1 4 2 £2 _ 2x2 2 2
Po(X) = ——5———— 4 7 VT \[§ = 26°k2-B(k)-£-exp :
(6% +2¢2) 4 ( 4 ) o (i&zx _ /54 B 2§2K2> o e <i£2x B /54 B 25sz>
2¢ 28
(51)
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a2, 4 52 9
R L R (57)
4 2 2 0
Py = VI 2 (58)
0 x) =58 - 28% (59)

2

From the general solution obtained by adding the particular and
the homogeneous solutions, it is possible to calculate the constants
@, and @, present in the homogeneous solution and, consequently,
in the general solution. This calculation is performed by applying
the initial conditions:

WK(&X = 0) = Wh(ﬁx = 0) + lllp(gvx = O) = w1
3 2 3
= m VaB(K)eT[1 - erf (5)]: (60)
al//K(E7 X) a[Wh (g,X) + \// (g,X)] (o)) 4 2
X o X ’ XZO_TVg -2
=0,m, =0.
(61)

Thus, the following general solution is obtained from the initial
conditions:

nien) = e(FE0) B e o), 62
where

2—2erf(§/2)
D(E,x)zﬁcos((a) (63)
and

£ - 2872
gt 0=V (- )[ml(s?m@z(s?xﬂ (64)

An alternative representation of the solution can be obtained by
making the following definitions:

2 £2,2
A = exp (S0 ) 2V (65)
154 _ 252[{2 K2
II(E, ):W EXP( 5 ) (66)
2 - 2erf<E/2)
“Tioe (67)
Thus, equations (62)—(64) can be expressed by:
V(€. x) = Ax,§)[D(E,x) + Qg(€,%)], (68)
D(&,x)=A(¢) - cos(@), (69)
Qg (&, x)=I1(x,£)- [iQ1(§,X) + Q2(£,X)]. (70)
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The analytical solution achieved in this paper is free of ap-
proximations and, consequently, satisfies equation (15). Further-
more, by the uniqueness theorem for initial value problems, in the
case of second-order differential equations, it can be said that the
analytical solution obtained, as shown in equation (68), is unique,
as found by Boyce and DiPrima [35] and by Simmons [33].

Another critical point that shows the generality of the obtained
solution is the fact that when k — 0, the canonical solution proposed
by Palma, Martinez and Silva [32] for a standard Voigt profile is
reached, such that:

limy, (¢.x) = 7 exp (52 ‘452"2) lim {B()D(E X)
" B<K>9g<5,x>}7 (71)
limy, £, = ¥ exp (52 = "2) os (52
{1 +Re (erf (lgxz 5)) + tan (e f (ifxz— 5)) },
(72)

3.2. Analytical solution for |x-£| > 6

For the |x-£| > 6 domain, a second method is proposed by
making an approximation through conducting asymptotic expan-
sions in the Taylor series. From equation (13) one can make the
following definition:

2 22
\/1+K2( x-yP) + -y
fux,y) = 112 T2 (73)
By replacing equation (73) in equation (6), we get:
5 +o0 gz
(e = 5 B0 JfK(x yrexp( - 5x-y?)dy  (74)

By expanding function fi(x,y) in Taylor series at y =x, we
obtain:

1 2x
o ="te—nara e e Y
2 2
1 -2 (14+%%) _12X2+4~(y—x)2+.. (75)

4 (k2 —1)(1+x2)>

The term exp, (W) using Taylor series for y = x can be

represented by Ref. [7]:

1 . 1 .
exp,(z) = exp ;arcsm(;cz) =exp|z+ ;arcsm(Kz) -z

= exp(z)exp (1 arcsin(kz) — 7—) =exp(z)exp ( 36? 3)
(1 - %) exp(z).

(76)

Analysing the integrand of equation (74), it is possible to note
that it will vanish except in the neighbourhood of y ~ x. Therefore,
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we may hold up only the first term of expansion (76).
At this point, we make the following definition:

220, 82
hAy).ﬂ(yrexp<—5—9%—39—>, (77)
By rewriting equation (74), we get the following:
g +o00
Ue(Ex) = 5280 | hey)dy. (78)

—o0

By integrating equation (77) term by term, we obtain a final
expression for the Doppler broadening function, which we called
method 2 [7]:

(1—k2)(1+22)
—3K2E2 — k284 44— 1242
282(12 = 1) (1 +22)°

WJXH>q;m@[ 1

(79)

The analytical results for the deformed Doppler broadening
function using Kaniadakis distribution considering method 1 and
method 2 (five order expansion) are presented in the next section.

Given these two different proposed methods, it is possible to
represent the validity of the two methods visually, as can be seen in
Fig. 1:

The following section presents the results obtained from the
analytical and numerical solutions. Moreover, the processing times
of the numerical and analytical solutions under conditions of the
same computational methodology were compared.
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4. Results and discussion

The calculation of the numerical deformed Doppler broadening
function, employing equation (6), can be very computationally
costly. There are works in the literature that mention this problem
and propose new approaches [36,37]. Hence, using an analytical
solution can considerably improve computational modules like
FRENDY computer code [36,38].

One of this paper's primary goals was to compare the perfor-
mance of the numerical and analytical solutions of the deformed
Doppler broadening function using the Kaniadakis distribution. To
do that, we used the same computational methodology, the timeit
module from the Python standard library [39], which is constantly
applied in the literature for this purpose [40—43]. Our procedure
calculates the analytical and numerical deformed Doppler broad-
ening functions for all the mesh points (Fig. 1) one million times
each, the default timeit settings for the number of repetitions [39],
presenting the total CPU value of time for each one hundred points.
The numerical and analytical results are shown in Tables 2—5, and
the computation times are shown in Tables 6—9.

To simulate the CPU processing time, we computed the solu-
tions one million times for each of the 100 mesh points, requiring a
total of one hundred million calculation processes. This order of
magnitude is consistent with the actual applications for CPU pro-
cessing time in most areas. We performed the calculations on a
standard PC (8 Gb random access memory, i5-4590T 2.0 GHz
maximum frequency).

All the calculated solutions used identical programming lan-
guages, compilers and methodology for CPU time calculation, data
structure, and the number of executions (108 for each point).
Thereby, we computed the ratio numerical/analytical between each
element of the generated tables and calculated the average of the
one hundred results (Tables 10 and 11).

As stated previously, calculating the deformed Doppler

® 6 6 06 06 06 0 0 0 O
® 6 06 6 06 06 0 0 0 o
® 6 6 06 06 06 0 ¢ 0 o
® 6 6 06 6 0 0 ¢ 0 O
B2 E B 2B e o 6 0 ¢
B R E BER E B ERE e e

o
e
(%]
=
N

»
)]
(o]
[y
o
N
o
S
o

X

® Method1l B Method 2

Fig. 1. Representation of the methods validities in the space (x,£).
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Table 2

Numerical results obtained from equation (5) considering.x = 0.1
3 x=0 x =05 x=1 X=2 Xx=4 Xx=6 x=38 x=10 x =20 x =40
0.05 0.04258 0.04257 0.04255 0.04248 0.04217 0.04167 0.04097 0.04010 0.03349 0.01645
0.10 0.08286 0.08281 0.08267 0.08209 0.07982 0.07618 0.07136 0.06563 0.03302 0.00296
0.15 0.12099 0.12084 0.12037 0.11854 0.11149 0.10070 0.08739 0.07294 0.01760 0.00085
0.20 0.15710 0.15676 0.15572 0.15165 0.13644 0.11455 0.08996 0.06632 0.00776 0.00070
0.25 0.19133 0.19068 0.18877 0.18132 0.15451 0.11879 0.08296 0.05326 0.00427 0.00067
0.30 0.22377 0.22272 0.21960 0.20758 0.16609 0.11558 0.07114 0.03992 0.00326 0.00065
0.35 0.25455 0.25297 0.24829 0.23048 0.17193 0.10748 0.05839 0.02938 0.00294 0.00065
0.40 0.28377 0.28153 0.27493 0.25016 0.17297 0.09686 0.04705 0.02221 0.00280 0.00064
0.45 0.31151 0.30849 0.29961 0.26681 0.17026 0.08560 0.03810 0.01775 0.00272 0.00064
0.50 0.33788 0.33394 0.32244 0.28062 0.16483 0.07494 0.03155 0.01510 0.00267 0.00063

Table 3

Numerical results obtained from equation (5) considering.x = 0.2
13 Xx=0 x=0.5 x=1 X=2 X=4 X=6 X=8 x=10 X =20 X =40
0.05 0.04098 0.04097 0.04095 0.04088 0.04060 0.04013 0.03948 0.03866 0.03250 0.01658
0.10 0.07979 0.07974 0.07961 0.07907 0.07695 0.07355 0.06906 0.06372 0.03324 0.00402
0.15 0.11657 0.11643 0.11600 0.11429 0.10771 0.09764 0.08522 0.07172 0.01944 0.00117
0.20 0.15145 0.15113 0.15016 0.14636 0.13217 0.11174 0.08875 0.06660 0.00975 0.00078
0.25 0.18455 0.18395 0.18217 0.17522 0.15018 0.11681 0.08324 0.05519 0.00555 0.00069
0.30 0.21597 0.21499 0.21208 0.20085 0.16211 0.11484 0.07299 0.04305 0.00393 0.00066
0.35 0.24581 0.24434 0.23997 0.22334 0.16862 0.10817 0.06152 0.03300 0.00328 0.00065
0.40 0.27418 0.27209 0.26592 0.24279 0.17059 0.09895 0.05099 0.02571 0.00298 0.00064
0.45 0.30115 0.29833 0.29003 0.25938 0.16899 0.08889 0.04232 0.02077 0.00283 0.00064
0.50 0.32681 0.32313 0.31238 0.27330 0.16475 0.07912 0.03563 0.01752 0.00274 0.00064

Table 4

Analytical results obtained from the combination of methods 1 and 2 considering.x = 0.1
13 x=0 x=0.5 x=1 X=2 X=4 X=6 X=8 x=10 x =20 X =40
0.05 0.04257 0.04256 0.04255 0.04247 0.04216 0.04166 0.04096 0.04009 0.03347 0.01634
0.10 0.08283 0.08278 0.08264 0.08206 0.07978 0.07614 0.07132 0.06557 0.03278 0.00263
0.15 0.12092 0.12077 0.12030 0.11847 0.11141 0.10059 0.08724 0.07271 0.01696 0.00076
0.20 0.15698 0.15664 0.15560 0.15152 0.13627 0.11431 0.08957 0.06576 0.00708 0.00069
0.25 0.19114 0.19050 0.18858 0.18112 0.15422 0.11831 0.08222 0.05227 0.00333 0.00066
0.30 0.22352 0.22247 0.21934 0.20727 0.16561 0.11477 0.06997 0.03857 0.00301 0.00065
0.35 0.25422 0.25263 0.24793 0.23005 0.17118 0.10625 0.05681 0.02786 0.00285 0.00064
0.40 0.28334 0.28110 0.27447 0.24958 0.17189 0.09519 0.04520 0.02075 0.00275 0.00064
0.45 0.31099 0.30795 0.29903 0.26604 0.16879 0.08350 0.03614 0.01649 0.00269 0.00063
0.50 0.33725 0.33329 0.32172 0.27962 0.16291 0.07250 0.02965 0.01407 0.00265 0.00063

Table 5

Analytical results obtained from the combination of methods 1 and 2 considering.k = 0.2
£ x=0 x=0.5 x=1 X=2 X=4 X=6 Xx=8 x=10 x =20 X =40
0.05 0.04094 0.04094 0.04092 0.04085 0.04056 0.04009 0.03944 0.03862 0.03242 0.01614
0.10 0.07966 0.07962 0.07948 0.07894 0.07682 0.07340 0.06888 0.06348 0.03229 0.00266
0.15 0.11630 0.11616 0.11572 0.11400 0.10739 0.09722 0.08462 0.07084 0.01693 0.00076
0.20 0.15099 0.15066 0.14969 0.14586 0.13153 0.11079 0.08728 0.06446 0.00693 0.00068
0.25 0.18384 0.18324 0.18144 0.17442 0.14905 0.11497 0.08039 0.05138 0.00344 0.00066
0.30 0.21498 0.21399 0.21104 0.19968 0.16025 0.11172 0.06846 0.03776 0.00298 0.00064
0.35 0.24450 0.24301 0.23858 0.22168 0.16576 0.10344 0.05538 0.02694 0.00282 0.00063
0.40 0.27252 0.27039 0.26412 0.24054 0.16646 0.09246 0.04367 0.01969 0.00272 0.00063
0.45 0.29911 0.29623 0.28776 0.25640 0.16331 0.08072 0.03447 0.01535 0.00266 0.00063
0.50 0.32436 0.32060 0.30958 0.26944 0.15732 0.06958 0.02786 0.01292 0.00262 0.00062

broadening function and, consequently, the quantities that depend
on it (like nuclear cross-sections) can be very costly from a
computational point of view. Specifically, equation (6) calculation
in different applications takes considerable computational time
due to the iterative calculations with very narrow meshes.

Hence, in order to overcome this difficulty, we propose an
alternative analytical solution considering two different methods
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for the |x-£| space. For the |x-| <6 regions, we presented, in this
paper, a new method for solving equation (15). Also, in this work,
we introduced the final solution in an alternative, shorter way
represented by equation (68). This new formulation is a more
robust way to obtain the analytical solution since this method does
not require any hypothetical assumptions.

Furthermore, the present work conducted a comparison of CPU



W.V. de Abreu, A.S. Martinez, E.D. do Carmo et al. Nuclear Engineering and Technology 54 (2022) 14711481

Table 6

Computational times (s) for the numerical results, considering.x = 0.1.
3 x=0 x =05 x=1 X=2 Xx=4 Xx=6 x=38 x =10 x =20 x =40
0.05 214.2 194.9 193.6 194.5 197.5 198.2 198.4 196.3 198.5 198.3
0.10 236.1 200.4 188.2 191.9 1934 1929 195.5 194.3 191.2 193.0
0.15 195.6 191.0 189.3 190.7 193.0 193.4 195.7 193.4 192.8 195.7
0.20 188.8 191.7 199.2 194.1 198.1 193.6 193.7 193.3 191.8 196.4
0.25 1874 189.8 205.8 192.7 193.1 190.6 191.8 192.5 192.5 196.9
0.30 190.3 1933 195.2 193.2 197.1 1929 190.3 189.8 194.0 193.7
0.35 191.5 212.6 196.4 192.9 192.7 193.9 192.2 192.3 202.0 198.3
0.40 198.9 194.0 190.8 193.6 193.2 196.8 191.6 191.8 197.6 194.6
0.45 198.5 189.2 192.5 191.5 189.3 1921 189.0 192.0 195.6 196.1
0.50 201.1 187.4 195.0 192.1 194.2 196.6 194.1 193.5 194.9 195.5

Table 7

Computational times (s) for the numerical results, considering.x = 0.2.
£ x=0 x=0.5 x=1 X=2 X=4 X=6 x=38 x=10 x =20 X =40
0.05 198.1 202.1 200.3 217.5 197.5 199.0 197.0 1984 196.6 197.2
0.10 190.0 193.1 194.7 202.3 194.3 195.6 192.5 194.4 194.8 195.6
0.15 189.7 1933 193.7 195.1 193.8 1929 193.7 195.8 190.7 191.8
0.20 190.9 193.0 206.2 194.6 194.7 192.8 191.5 192.8 198.2 198.3
0.25 189.2 194.8 195.1 193.6 191.9 193.8 196.4 191.6 191.7 193.7
0.30 193.7 198.0 2134 196.2 199.9 1934 191.6 195.3 194.4 196.2
0.35 190.8 193.1 2153 190.7 194.5 195.6 192.7 194.1 193.9 190.9
0.40 193.5 195.8 198.8 197.6 195.3 191.8 194.8 193.0 194.7 197.6
0.45 189.4 194.3 192.2 1914 191.5 1933 194.5 191.3 192.8 192.4
0.50 195.7 192.0 196.1 1924 194.0 193.7 190.7 195.8 195.5 194.4

Table 8

Computational times (s) from the combination of methods 1 and 2 results, considering.k = 0.1.
1 x=0 x=0.5 x=1 X=2 X=4 X=06 X =28 x =10 X =20 X =40
0.05 36.9 35.6 38.2 38.7 375 37.0 38.2 38.2 37.6 38.1
0.10 36.8 375 384 38.8 38.6 374 37.6 36.7 39.0 37.8
0.15 35.2 37.7 37.8 39.1 37.8 39.7 39.8 393 40.4 1411
0.20 35.6 38.5 37.9 38.8 39.0 389 38.5 394 38.8 136.5
0.25 34.3 373 39.7 39.9 40.6 40.4 37.8 383 394 1394
0.30 34.2 383 38.5 38.5 38.6 38.9 39.2 40.6 143.9 141.7
0.35 35.0 40.1 389 413 39.1 37.7 38.2 39.5 139.8 138.7
0.40 34.8 40.1 383 39.0 40.5 40.0 40.2 40.1 140.0 141.1
0.45 34.8 39.2 39.7 39.0 38.8 39.7 41.2 39.7 1413 1415
0.50 36.5 38.6 41.0 39.5 404 399 40.5 39.5 138.7 140.5

Table 9

Computational times (s) from the combination of methods 1 and 2, considering.x = 0.2.
13 x=0 x=0.5 x=1 X=2 Xx=4 X=6 Xx=28 x =10 x =20 X =40
0.05 37.9 35.6 36.7 375 37.6 375 38.2 39.3 375 37.7
0.10 36.8 40.1 39.0 36.9 38.5 38.5 36.9 46.1 38.2 37.8
0.15 67.0 374 395 373 37.8 38.1 383 419 38.5 1389
0.20 37.7 38.6 37.9 39.1 373 375 37.1 38.6 37.8 135.8
0.25 37.7 384 38.2 37.0 38.7 38.7 37.7 373 374 1384
0.30 36.4 39.6 38.8 395 39.7 395 40.3 389 1424 138.3
0.35 35.7 39.0 38.9 384 455 38.8 37.9 39.4 139.5 137.6
0.40 34.2 39.9 40.4 37.6 40.8 45.7 39.7 41.0 140.9 137.8
0.45 36.1 38.6 39.1 393 39.5 48.3 39.9 393 142.2 139.7
0.50 35.1 41.6 395 389 38.5 443 39.4 39.2 139.6 140.2
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Table 10

Ratio of the numerical/analytical computational times (s) for x = 0.1 and the average value.
£ x=0 x=0.5 x=1 X=2 X=4 X=06 Xx=28 x =10 x =20 X =40
0.05 5.8 5.5 5.1 5.0 53 54 52 5.1 53 5.2
0.10 6.4 53 49 5.0 5.0 5.2 52 53 4.9 5.1
0.15 5.6 5.1 5.0 4.9 5.1 4.9 4.9 4.9 4.8 14
0.20 5.3 5.0 53 5.0 5.1 5.0 5.0 49 49 14
0.25 5.5 5.1 5.2 48 48 4.7 5.1 5.0 4.9 14
0.30 5.6 5.1 5.1 5.0 5.1 5.0 4.8 4.7 13 14
0.35 5.5 53 5.0 4.7 49 5.1 5.0 49 14 14
0.40 5.7 48 5.0 5.0 48 49 4.8 48 14 14
0.45 5.7 4.8 4.8 49 4.9 4.8 4.6 4.8 14 14
0.50 5.5 4.8 4.8 49 4.8 49 4.8 49 14 14

Av. 4.6

Table 11

Ratio of the numerical/analytical computational times (s) for k = 0.2 and the average value.
3 x=0 x=0.5 x=1 X=2 x=4 Xx=6 x=38 x =10 x =20 x =40
0.05 5.2 5.7 5.5 5.8 53 53 52 5.0 5.2 5.2
0.10 52 4.8 5.0 55 5.0 5.1 5.2 4.2 5.1 5.2
0.15 2.8 5.2 49 5.2 5.1 5.1 5.1 4.7 5.0 14
0.20 51 5.0 54 5.0 5.2 5.1 52 5.0 5.2 1.5
0.25 5.0 5.1 5.1 5.2 5.0 5.0 5.2 5.1 5.1 14
0.30 53 5.0 5.5 5.0 5.0 49 4.8 5.0 14 14
0.35 53 49 5.5 5.0 43 5.0 5.1 4.9 14 14
0.40 5.6 49 49 53 48 4.2 49 4.7 14 14
0.45 53 5.0 4.9 49 4.9 4.0 49 4.9 14 14
0.50 5.6 4.6 5.0 5.0 5.0 4.4 4.8 5.0 14 14

Av. 4.6

processing times between the analytical and numerical represen-
tations of the deformed Doppler broadening function using the
Kadaniadakis distribution.

In this comparison, we found that the analytical solution is
approximately 4.6 times faster than the numerical method for both
k=0.1and k =0.2.

5. Conclusions

This paper presents a new approach for solving the differential
equation of the analytical Kaniadakis Doppler broadening (KDB)
function. By using this methodology, one can solve the homoge-
neous part of the equation without assuming any approximations,
thus advancing over previous solutions presented in recent papers.

Furthermore, for the first time, we present a comparison of
computational times between the analytical and numerical solu-
tions for y,. This comparison emphasizes the potential advantages
of using analytical solutions for cases with very costly computa-
tional processes. These results show an improvement in efficiency
using the analytical approximation, indicating that it may be
helpful in different applications that require the calculation of the
deformed Voigt function or the deformed Voigt profile in other
areas.
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