• Title/Summary/Keyword: Generalized Modeling

Search Result 396, Processing Time 0.034 seconds

Influence of the Nursing Practice Environment on Job Satisfaction and Turnover Intention

  • Lee, Sang-Yi;Kim, Chul-Woung;Kang, Jeong-Hee;Yoon, Tae-Ho;Kim, Cheoul Sin
    • Journal of Preventive Medicine and Public Health
    • /
    • v.47 no.5
    • /
    • pp.258-265
    • /
    • 2014
  • Objectives: To examine whether the nursing practice environment at the hospital-level affects the job satisfaction and turnover intention of hospital nurses. Methods: Among the 11 731 nurses who participated in the Korea Health and Medical Workers' Union's educational program, 5654 responded to our survey. Data from 3096 nurses working in 185 general inpatient wards at 60 hospitals were analyzed using multilevel logistic regression modeling. Results: Having a standardized nursing process (odds ratio [OR], 4.21; p<0.001), adequate nurse staffing (OR, 4.21; p<0.01), and good doctor-nurse relationship (OR, 4.15; p<0.01), which are hospital-level variables based on the Korean General Inpatients Unit Nursing Work Index (KGU-NWI), were significantly related to nurses' job satisfaction. However, no hospital-level variable from the KGU-NWI was significantly related to nurses' turnover intention. Conclusions: Favorable nursing practice environments are associated with job satisfaction among nurses. In particular, having a standardized nursing process, adequate nurse staffing, and good doctor-nurse relationship were found to positively influence nurses' job satisfaction. However, the nursing practice environment was not related to nurses' turnover intention.

Integrational Operation of Stochastics and Neural Networks Theory for Nonlinear Modeling (비선형 모형화를 위한 추계학 및 신경망이론의 통합운영)

  • Kim, Seong-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1423-1426
    • /
    • 2007
  • The goal of this research is to develop and apply the integrational model for the pan evaporation and the alfalfa reference evapotranspiration in Republic of Korea. Since the observed data of the alfalfa reference evapotranspiration using lysimeter have not been measured for a long time in Republic of Korea, PM method is used to assume and estimate the observed alfalfa reference evapotranspiration. The integrational model consists of staochastics and neural networks processes respectively. The stochastics process is applied to extend for the short-term monthly pan evaporation and alfalfa reference evapotranspiration. The extended data of the monthly pan evaporation and alfalfa reference evapotranspiration is used to evaluate for the training performance. For the neural networks process, the generalized regression neural networks model(GRNNM) is applied to evaluate for the testing performance using the observed data respectively. From this research, we evaluate the impact of the limited climatical variables on the accuracy of the integrational operation of stochastics and neural networks processes. We should, furthermore, construct the credible data of the pan evaporation and the alfalfa reference evapotranspiration, and suggest the reference data for irrigation and drainage networks system in Republic of Korea.

  • PDF

Design of Moving Coil Type Optical Pickup Actuator for Flexible Disk System (유연디스크용 가동 코일형 광 픽업 엑추에이터 개발)

  • Kim, Yoon-Ki;Song, Myeong-Gyu;Lee, Dong-Ju;Yoo, Jeong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.240-244
    • /
    • 2006
  • As high-definition television(HDTV) broadcasting becoming more generalized, there have been many researches and developments about a large storage capacity and a fast data transfer rate in optical disk drives (ODD). Pickup actuators must have high flexible mode frequencies and large gain margins. Flexible modes are caused by the flexibility of moving parts in the actuator and a servo bandwidth is limited by them. As a result, the system becomes unstable for high-speed operations in high density reading and recording. In this paper, we suggest improved modeling method in considering of the bonding layer. And, the flexible mode frequency of actuator is improved by Design of Experiments of lens holder. The Magnet circuit is designed considering the relation with the moving part. Through improving the yoke design, the magnetic flux is changed and the DC tilt is reduced. Consequently, we designed an actuator which has a high flexible mode frequency and a large gain margins.

  • PDF

A Comarative study on slope stability modeling of highly fractured rock slopes (절리암반사면의 안정해석 방법에 관한 비교연구)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Yang, Ki-Ho;Jung, Ha-Seung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.434-443
    • /
    • 2009
  • Slope stability analysis is an essential part of rock slope design. For highly fractured rock, the limit equilibrium method (LEM) based slope stability analysis with a circular failure surface is often carried out assuming the rock mass behaves more or less as a continuum. This paper examines first, the applicability of the finite-element method (FEM) based shear strength reduction (SSR) technique for highly fractured rock slope, and second the use of Mohr-Coulomb (MC) failure criterion in conjunction with generalized Hoek-Brown (HB) failure criterion. The numerical results on a number of cases are compared in terms of the factor of safety (FS). The results indicated that the FEM-based SSR technique yields almost the same FSs from LEM, and that the MC and HB failure criteria yield almost identical FSs when the strength parameters for MC failure criterion are obtained based on the modified HB failure criterion if and only if value of the Hoek-Brown constant $m_i$ is smaller than 10 and slope angle is smaller than 1:1, otherwise MC failure criteria over-estimate the factor of safety.

  • PDF

Monte Carlo simulation for the response analysis of long-span suspended cables under wind loads

  • Di Paola, M.;Muscolino, G.;Sofi, A.
    • Wind and Structures
    • /
    • v.7 no.2
    • /
    • pp.107-130
    • /
    • 2004
  • This paper presents a time-domain approach for analyzing nonlinear random vibrations of long-span suspended cables under transversal wind. A consistent continuous model of the cable, fully accounting for geometrical nonlinearities inherent in cable behavior, is adopted. The effects of spatial correlation are properly included by modeling wind velocity fluctuation as a random function of time and of a single spatial variable ranging over cable span, namely as a one-variate bi-dimensional (1V-2D) random field. Within the context of a Galerkin's discretization of the equations governing cable motion, a very efficient Monte Carlo-based technique for second-order analysis of the response is proposed. This procedure starts by generating sample functions of the generalized aerodynamic loads by using the spectral decomposition of the cross-power spectral density function of wind turbulence field. Relying on the physical meaning of both the spectral properties of wind velocity fluctuation and the mode shapes of the vibrating cable, the computational efficiency is greatly enhanced by applying a truncation procedure according to which just the first few significant loading and structural modal contributions are retained.

A Study on the Improvement of Human Operators' Performance in Detection of External Defects in Visual Inspection (품질 검사자의 외관검사 검출력 향상방안에 관한 연구)

  • Han, Sung-Jae;Ham, Dong-Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.4
    • /
    • pp.67-74
    • /
    • 2019
  • Visual inspection is regarded as one of the critical activities for quality control in a manufacturing company. it is thus important to improve the performance of detecting a defective part or product. There are three probable working modes for visual inspection: fully automatic (by automatic machines), fully manual (by human operators), and semi-automatic (by collaboration between human operators and automatic machines). Most of the current studies on visual inspection have been focused on the improvement of automatic detection performance by developing a better automatic machine using computer vision technologies. However, there are still a range of situations where human operators should conduct visual inspection with/without automatic machines. In this situation, human operators'performance of visual inspection is significant to the successful quality control. However, visual inspection of components assembled into a mobile camera module belongs to those situations. This study aims to investigate human performance issues in visual inspection of the components, paying more attention to human errors. For this, Abstraction Hierarchy-based work domain modeling method was applied to examine a range of direct or indirect factors related to human errors and their relationships in the visual inspection of the components. Although this study was conducted in the context of manufacturing mobile camera modules, the proposed method would be easily generalized into other industries.

A Study on the Estimation of Elasto-Plastic Buckling Loads for Sing1e Layer Latticed Domes by Unit Member Modeling Technique. (단위부재 모델화에 따른 단층 래티스 돔의 탄소성 좌골하중의 산정에 관한 연구)

  • 한상을;이상주;유용주;이경수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.290-297
    • /
    • 1998
  • In this paper, we propose to a method to estimate the elasto-plastic buckling for single layer latticed domes. First, we assume that each member consists of the rigid zone and elastic spring at both end joint, the elastic element and three elasto-plastic spring to judge for yeilding the member. Next, the member which has most influence on buckling for structures is determined by a distributed pattern of the strain energy which is calculated through linear eigenvalue analysis. And then, normalized slenderness ratio of the element is derived considering the axial force at elastic buckling load. Later, we execute elasto-plastic nonlinear analysis that based on loading increasement method and displacement increasement method. From this results, we discusses the effect of the joint rigidity and the half open angle $\theta$$_{0}$ on the buckling strength of single layer lattice domes ; (1) how the joint rigidity contributes to the reduction of buckling loads, (2) how the reduction can be interrelated to compressive strength curves in terms of the generalized slenderness for the member most relevant to the overall buckling of domes.s.

  • PDF

Development of the Robust Speed Controller for Marine Medium Speed Diesel Engines (선박용 중속 디젤 기관의 로바스트 속도제어기 개발)

  • 정병건;양주호;김창화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.27-35
    • /
    • 1996
  • The ship's propulsion efficiency depends upon a combibation of engine and propeller. The propeller has better efficiency as the engine has lower rotational speed. This situation led the engine manufacures to design the engine that has lower speed, longer stroke and a small number of cylinders. With this new trends the conventional mechanical-hydrualic governors for engine speed control have been replaced by digital speed controllers which adopted the PID control or the optimal control algorithm. But these control algorithms have not enough robustness to suppress the variations of the delay-time and the parameter perturbation especially in low speed engine. In this study we consider the perturbations of the engine parameters as the modeling uncetainties and design a robust speed controller for marine medium speed diesel engine by means of $ extit{H}_{infty}$control theory having the central solution. By comparing the results of the robust speed controller with those of mechanical governor and PID controller, the validity of the robust speed controller under parameter variations is confirmed. The speed control of the experimental diesel engine of carried out using actuator which is composed of PWM signal generator and D.C servo motor.

  • PDF

Development of the Robust Speed Controller for Marine Medium Speed Diesel Engines (선박용 중속 디젤 기관의 로바스트 속도제어기 개발)

  • Jung, B.G.;Yang, J.H.;Kim, C.H.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.349-349
    • /
    • 1996
  • The ship's propulsion efficiency depends upon a combibation of engine and propeller. The propeller has better efficiency as the engine has lower rotational speed. This situation led the engine manufacures to design the engine that has lower speed, longer stroke and a small number of cylinders. With this new trends the conventional mechanical-hydrualic governors for engine speed control have been replaced by digital speed controllers which adopted the PID control or the optimal control algorithm. But these control algorithms have not enough robustness to suppress the variations of the delay-time and the parameter perturbation especially in low speed engine. In this study we consider the perturbations of the engine parameters as the modeling uncetainties and design a robust speed controller for marine medium speed diesel engine by means of $ extit{H}_{infty}$control theory having the central solution. By comparing the results of the robust speed controller with those of mechanical governor and PID controller, the validity of the robust speed controller under parameter variations is confirmed. The speed control of the experimental diesel engine of carried out using actuator which is composed of PWM signal generator and D.C servo motor.

An Amber Force Field for S-Nitrosoethanethiol That Is Transferable to S-Nitrosocysteine

  • Han, Sang-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2903-2908
    • /
    • 2010
  • Protein S-nitrosation is common in cells under nitrosative stress. In order to model proteins with S-nitrosocysteine (CysSNO) residues, we first developed an Amber force field for S-nitrosoethanethiol (EtSNO) and then transferred it to CysSNO. Partial atomic charges for EtSNO and CysSNO were obtained by a restrained electrostatic potential approach to be compatible with the Amber-99 force field. The force field parameters for bonds and angles in EtSNO were obtained from a generalized Amber force field (GAFF) by running the Antechamber module of the Amber software package. The GAFF parameters for the CC-SN and CS-NO dihedrals were not accurate and thus determined anew. The CC-SN and CS-NO torsional energy profiles of EtSNO were calculated quantum mechanically at the level of B3LYP/cc-pVTZ//HF/6-$31G^*$. Torsional force constants were obtained by fitting the theoretical torsional energies with those obtained from molecular mechanics energy minimization. These parameters for EtSNO reproduced, to a reasonable accuracy, the corresponding torsional energy profiles of the capped tripeptide ACE-CysSNO-NME as well as their structures obtained from quantum mechanical geometry optimization. A molecular dynamics simulation of myoglobin with a CysSNO residue produced a well-behaved trajectory demonstrating that the parameters may be used in modeling other S-nitrosated proteins.