Integrational Operation of Stochastics and Neural Networks Theory for Nonlinear Modeling

비선형 모형화를 위한 추계학 및 신경망이론의 통합운영

  • 김성원 (동양대학교 철도토목학과)
  • Published : 2007.05.17

Abstract

The goal of this research is to develop and apply the integrational model for the pan evaporation and the alfalfa reference evapotranspiration in Republic of Korea. Since the observed data of the alfalfa reference evapotranspiration using lysimeter have not been measured for a long time in Republic of Korea, PM method is used to assume and estimate the observed alfalfa reference evapotranspiration. The integrational model consists of staochastics and neural networks processes respectively. The stochastics process is applied to extend for the short-term monthly pan evaporation and alfalfa reference evapotranspiration. The extended data of the monthly pan evaporation and alfalfa reference evapotranspiration is used to evaluate for the training performance. For the neural networks process, the generalized regression neural networks model(GRNNM) is applied to evaluate for the testing performance using the observed data respectively. From this research, we evaluate the impact of the limited climatical variables on the accuracy of the integrational operation of stochastics and neural networks processes. We should, furthermore, construct the credible data of the pan evaporation and the alfalfa reference evapotranspiration, and suggest the reference data for irrigation and drainage networks system in Republic of Korea.

Keywords