• Title/Summary/Keyword: Generalized Mass

Search Result 201, Processing Time 0.025 seconds

Efficient Flutter Analysis for Aircraft with Various Analysis Conditions (다양한 해석조건을 갖는 항공기에 대한 효율적인 플러터 해석)

  • Lee, Sang-Wook;Kim, Tae-Uk;Hwang, In-Hee;Paek, Seung-Kil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.49-52
    • /
    • 2005
  • Flutter analysis procedure can be divided into two steps such as the computation of generalized mass, stiffness, and unsteady aerodynamic matrices and the calculation of major vibration modes frequency and damping values at each flight speed by solving the complex eigenvalue problem. In aircraft flutter analyses, most of the time is spent in the process of computing the unsteady aerodynamic matrices at each Mach-reduced frequency pairs defined. In this study, the method has been presented for computation and extraction of unsteady aerodynamic matrix portions dependent only on aerodynamic model using DMAP ALTER in MSC/NASTRAN SOL 145. In addition, efficient flutter analysis method has been suggested by computing and utilizing the unsteady generalized aerodynamic matrices for each analysis condition using the unsteady aerodynamic matrix portions extracted above.

  • PDF

Enhanced generalized modeling method for compliant mechanisms: Multi-Compliant-Body matrix method

  • Lim, Hyunho;Choi, Young-Man
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.503-515
    • /
    • 2022
  • The multi-rigid-body matrix method (MRBMM) is a generalized modeling method for obtaining the displacements, forces, and dynamic characteristics of a compliant mechanism without performing inner-force analysis. The method discretizes a compliant mechanism of any type into flexure hinges and rigid bodies by implementing a multi-body mass-spring model using coordinate transformations in a matrix form. However, in this method, the deformations of bodies that are assumed to be rigid are inherently omitted. Consequently, it may yield erroneous results in certain mechanisms. In this paper, we present a multi-compliant-body matrix-method (MCBMM) that considers a rigid body as a compliant element, while retaining the generalized framework of the MRBMM. In the MCBMM, a rigid body in the MRBMM is segmented into a certain number of body nodes and flexure hinges. The proposed method was verified using two examples: the first (an XY positioning stage) demonstrated that the MCBMM outperforms the MRBMM in estimating the static deformation and dynamic mode. In the second example (a bridge-type displacement amplification mechanism), the MCBMM estimated the displacement amplification ratio more accurately than several previously proposed modeling methods.

Dynamic Modeling of Bolt Joints Using Lumped Mass-Spring Model (집중 질량-스프링 모델을 이용한 볼트 결합부 모델링)

  • Go, Gang-Ho;Lee, Jang-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.495-501
    • /
    • 2001
  • In this paper, a new technique which models the joints characteristics through reduction of DOFs of structures with joints using component mode synthesis (CMS) method is proposed. Bolt joints are modeled by mass-spring systems. Also generalized mass and stiffness matrices for this models are introduced. Because bolt joints have influence on eigenvalues of structures, exact eigenvalues from modal test are used. The results show that the behaviors of structures with bolt joints depend to a large extent on the translational DOFs and not on rotational DOFs of mass and stiffness matrices of bolts. Furthermore it is confirmed that lumped mass-spring systems as models of bolt joints are effective models considering the facts that joint characteristics converged to constant values in some iterations and eignevalues from proposed method are in good agreement with ones from modal test.

Implementation of High Speed, Precise Position Control Algorithm for Linear Machine Drive System (선형 전동기 구동 시스템의 고속, 정밀 위치 제어 알고리즘의 구현)

  • 이유인;김준석;김용일
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.139-142
    • /
    • 1999
  • Recently, the application of the linear machine for industrial field is remarkable increased, especially for the gantry machine and machine tool system. In these application, high precise position control performance is essentially required in steady/transient state. This paper presents the generalized PID position control algorithm which have rare sensitivity to mass and disturbance. Through the experimental results, it is shown that the proposed algorithm have good performance for the linear machine drives in the steady state and transient state in spite of the load mass varing.

  • PDF

FINITE DIFFERENCE SCHEMES FOR A GENERALIZED NONLINEAR CALCIUM DIFFUSION EQUATION

  • Choo, S.M.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1247-1256
    • /
    • 2009
  • Finite difference schemes are considered for a nonlinear $Ca^{2+}$ diffusion equations with stationary and mobile buffers. The scheme inherits mass conservation as for the classical solution. Stability and $L^{\infty}$ error estimates of approximate solutions for the corresponding schemes are obtained. using the extended Lax-Richtmyer equivalence theorem.

  • PDF

CORRELATION AMONG MORPHOLOGICAL CLASSIFICATIONS AND MASS TO LUMINOSITY (M/L) RATIONS OF EXTRA GALAXIES

  • Chun, Mun-Suk;Na, Kyung-Sun
    • Journal of Astronomy and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.73-103
    • /
    • 1990
  • Morphological luminosity parameters$(\mu_e,\;r_e,\;\mu_0,\;\alpha^{-1})$ and D/B were estimated from the decomposition of surface brightness distributions of 28 extra galaxies. Decomposition was made using the standard non-linear least square fitting method and we used the seeing convolved model to get the central brightness of these galaxies. Masses and $M/L_B$ were calculated using rotational velocities of these galaxies from the fitting to the generalized Toomre's mass model.

  • PDF

Dynamic Optimization Algorithm of Constrained Motion

  • Eun, Hee-Chang;Yang, Keun-Heok;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1072-1078
    • /
    • 2002
  • The constrained motion requires the determination of constraint force acting on unconstrained systems for satisfying given constraints. Most of the methods to decide the force depend on numerical approaches such that the Lagrange multiplier method, and the other methods need vector analysis or complicated intermediate process. In 1992, Udwadia and Kalaba presented the generalized inverse method to describe the constrained motion as well as to calculate the constraint force. The generalized inverse method has the advantages which do not require any linearization process for the control of nonlinear systems and can explicitly describe the motion of holonomically and/or nongolonomically constrained systems. In this paper, an explicit equation to describe the constrained motion is derived by minimizing the performance index, which is a function of constraint force vector, with respect to the constraint force. At this time, it is shown that the positive-definite weighting matrix in the performance index must be the inverse of mass matrix on the basis of the Gauss's principle and the derived differential equation coincides with the generalized inverse method. The effectiveness of this method is illustrated by means of two numerical applications.

Flutter Analysis of Multiple Blade Rows Vibrating Under Aerodynamic Coupling

  • Kubo, Ayumi;Namba, Masanobu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.6-15
    • /
    • 2008
  • This paper deals with the aeroelastic instability of vibrating multiple blade rows under aerodynamic coupling with each other. A model composed of three blade rows, e.g., rotor-stator-rotor, where blades of the two rotor cascades are simultaneously vibrating, is considered. The displacement of a blade vibrating under aerodynamic force is expanded in a modal series with the natural mode shape functions, and the modal amplitudes are treated as the generalized coordinates. The generalized mass matrix and the generalized stiffness matrix are formulated on the basis of the finite element concept. The generalized aerodynamic force on a vibrating blade consists of the component induced by the motion of the blade itself and those induced not only by vibrations of other blades of the same cascade but also vibrations of blades in another cascade. To evaluate the aerodynamic forces, the unsteady lifting surface theory for the model of three blade rows is applied. The so-called k method is applied to determine the critical flutter conditions. A numerical study has been conducted. The flutter boundaries are compared with those for a single blade row. It is shown that the effect of the aerodynamic blade row coupling substantially modifies the critical flutter conditions.

  • PDF

A Generalized Correlation and Rating Charts for Mass Flow Rate through Capillary Tubes with Several Alternative Refrigerants

  • Choi Jong Min;Jang Yong Hee;Kim Yongchan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.4
    • /
    • pp.192-197
    • /
    • 2004
  • A capillary tube, which is a common expansion device in small sized refrig-eration and air-conditioning systems, should be redesigned properly to establish an optimum operation cycle of a refrigerating system with alternative refrigerants. Based on experimental data for R-22, R-290, and R-407C, an empirical correlation is developed to predict mass flow rate through capillary tubes. Dimensionless parameters are derived from the Buckingham Pi theorem, considering the effects of operating conditions and capillary tube geometry on mass flow rate. Approximately $97\%$ of the present data are correlated within a relative deviation of $\pm\;10\%.$ The present correlation also predicts the data obtained from open literature within $\pm\;15\%.$ In addition, rating charts of refrigerant flow rate for R-12, R-22, R-134a, R-152a, R-407C, R-410A, R-290, and R-600a are developed.

Modified Mass-Preserving Sample Entropy

  • Kim, Chul-Eung;Park, Sang-Un
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.13-19
    • /
    • 2002
  • In nonparametric entropy estimation, both mass and mean-preserving maximum entropy distribution (Theil, 1980) and the underlying distribution of the sample entropy (Vasicek, 1976), the most widely used entropy estimator, consist of nb mass-preserving densities based on disjoint Intervals of the simple averages of two adjacent order statistics. In this paper, we notice that those nonparametric density functions do not actually keep the mass-preserving constraint, and propose a modified sample entropy by considering the generalized 0-statistics (Kaigh and Driscoll, 1987) in averaging two adjacent order statistics. We consider the proposed estimator in a goodness of fit test for normality and compare its performance with that of the sample entropy.