• Title/Summary/Keyword: Generalized Bessel function

Search Result 39, Processing Time 0.024 seconds

FUNCTIONAL RELATIONS INVOLVING SRIVASTAVA'S HYPERGEOMETRIC FUNCTIONS HB AND F(3)

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.187-204
    • /
    • 2011
  • B. C. Carlson [Some extensions of Lardner's relations between $_0F_3$ and Bessel functions, SIAM J. Math. Anal. 1(2) (1970), 232-242] presented several useful relations between Bessel and generalized hypergeometric functions that generalize some earlier results. Here, by simply splitting Srivastava's hypergeometric function $H_B$ into eight parts, we show how some useful and generalized relations between Srivastava's hypergeometric functions $H_B$ and $F^{(3)}$ can be obtained. These main results are shown to be specialized to yield certain relations between functions $_0F_1$, $_1F_1$, $_0F_3$, ${\Psi}_2$, and their products including different combinations with different values of parameters and signs of variables. We also consider some other interesting relations between the Humbert ${\Psi}_2$ function and $Kamp\acute{e}$ de $F\acute{e}riet$ function, and between the product of exponential and Bessel functions with $Kamp\acute{e}$ de $F\acute{e}riet$ functions.

ON GENERALIZED EXTENDED BETA AND HYPERGEOMETRIC FUNCTIONS

  • Shoukat Ali;Naresh Kumar Regar;Subrat Parida
    • Honam Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.313-334
    • /
    • 2024
  • In the current study, our aim is to define new generalized extended beta and hypergeometric types of functions. Next, we methodically determine several integral representations, Mellin transforms, summation formulas, and recurrence relations. Moreover, we provide log-convexity, Turán type inequality for the generalized extended beta function and differentiation formulas, transformation formulas, differential and difference relations for the generalized extended hypergeometric type functions. Also, we additionally suggest a generating function. Further, we provide the generalized extended beta distribution by making use of the generalized extended beta function as an application to statistics and obtaining variance, coefficient of variation, moment generating function, characteristic function, cumulative distribution function, and cumulative distribution function's complement.

GENERALIZED THERMO ELASTIC WAVES IN A CYLINDRICAL PANEL EMBEDDED ON ELASTIC MEDIUM

  • Ponnusamy, P.;Selvamani, R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 2013
  • In this paper the three dimensional wave propagation in a homogeneous isotropic thermo elastic cylindrical panel embedded in an elastic medium (Winkler model) is investigated in the context of the L-S (Lord-Shulman) theory of generalized thermo elasticity. The analysis is carried out by introducing three displacement functions so that the equations of motion are uncoupled and simplified. A Bessel function solution with complex arguments is then directly used for the case of complex Eigen values. This type of study is important for design of structures in atomic reactors, steam turbines, wave loading on submarine, the impact loading due to superfast train and jets and other devices operating at elevated temperature. In order to illustrate theoretical development, numerical solutions are obtained and presented graphically for a zinc material with the support of MATLAB.

Extension of Generalized Hurwitz-Lerch Zeta Function and Associated Properties

  • Choi, Junesang;Parmar, Rakesh Kumar;Raina, Ravinder Krishna
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.393-400
    • /
    • 2017
  • Very recently, Srivastava et al. [8] introduced an extension of the Pochhammer symbol and used it to define a generalization of the generalized hypergeometric functions. In this paper, by using the generalized Pochhammer symbol, we extend the generalized Hurwitz-Lerch Zeta function by Goyal and Laddha [6] and investigate some interesting properties which include various integral representations, Mellin transforms, differential formula and generating function. Some interesting special cases of our main results are also considered.

The Incomplete Lauricella Functions of Several Variables and Associated Properties and Formulas

  • Choi, Junesang;Parmar, Rakesh K.;Srivastava, H.M.
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.19-35
    • /
    • 2018
  • Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [30] and the second Appell function [6], we introduce here the incomplete Lauricella functions ${\gamma}^{(n)}_A$ and ${\Gamma}^{(n)}_A$ of n variables. We then systematically investigate several properties of each of these incomplete Lauricella functions including, for example, their various integral representations, finite summation formulas, transformation and derivative formulas, and so on. We provide relevant connections of some of the special cases of the main results presented here with known identities. Several potential areas of application of the incomplete hypergeometric functions in one and more variables are also pointed out.

REAL COVERING OF THE GENERALIZED HANKEL-CLIFFORD TRANSFORM OF FOX KERNEL TYPE OF A CLASS OF BOEHMIANS

  • AGARWAL, PRAVEEN;AL-OMARI, S.K.Q.;CHOI, JUNESANG
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1607-1619
    • /
    • 2015
  • We investigate some generalization of a class of Hankel-Clifford transformations having Fox H-function as part of its kernel on a class of Boehmians. The generalized transform is a one-to-one and onto mapping compatible with the classical transform. The inverse Hankel-Clifford transforms are also considered in the sense of Boehmians.

A Note on the Characteristic Function of Multivariate t Distribution

  • Song, Dae-Kun;Park, Hyoung-Jin;Kim, Hyoung-Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.1
    • /
    • pp.81-91
    • /
    • 2014
  • This study derives the characteristic functions of (multivariate/generalized) t distributions without contour integration. We extended Hursts method (1995) to (multivariate/generalized) t distributions based on the principle of randomization and mixtures. The derivation methods are relatively straightforward and are appropriate for graduate level statistics theory courses.

THE INCOMPLETE LAURICELLA AND FIRST APPELL FUNCTIONS AND ASSOCIATED PROPERTIES

  • Choi, Junesang;Parmar, Rakesh K.;Chopra, Purnima
    • Honam Mathematical Journal
    • /
    • v.36 no.3
    • /
    • pp.531-542
    • /
    • 2014
  • Recently, Srivastava et al. [18] introduced the incomplete Pochhammer symbol and studied some fundamental properties and characteristics of a family of potentially useful incomplete hypergeometric functions. Here we introduce the incomplete Lauricella function ${\gamma}_D^{(n)}$ and ${\Gamma}_D^{(n)}$ of n variables, and investigate certain properties of the incomplete Lauricella functions, for example, their various integral representations, differential formula and recurrence relation, in a rather systematic manner. Some interesting special cases of our main results are also considered.

MONOTONICITY PROPERTIES OF THE GENERALIZED STRUVE FUNCTIONS

  • Ali, Rosihan M.;Mondal, Saiful R.;Nisar, Kottakkaran S.
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.575-598
    • /
    • 2017
  • This paper introduces and studies a generalization of the classical Struve function of order p given by $$_aS_{p,c}(x):=\sum\limits_{k=0}^{\infty}\frac{(-c)^k}{{\Gamma}(ak+p+\frac{3}{2}){\Gamma}(k+\frac{3}{2})}(\frac{x}{2})^{2k+p+1}$$. Representation formulae are derived for $_aS_{p,c}$. Further the function $_aS_{p,c}$ is shown to be a solution of an (a + 1)-order differential equation. Monotonicity and log-convexity properties for the generalized Struve function $_aS_{p,c}$ are investigated, particulary for the case c = -1. As a consequence, $Tur{\acute{a}}n$-type inequalities are established. For a = 2 and c = -1, dominant and subordinant functions are obtained for the Struve function $_2S_{p,-1}$.

GEOMETRIC PROPERTIES OF GENERALIZED DINI FUNCTIONS

  • Deniz, Erhan;Goren, Seyma
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.101-116
    • /
    • 2019
  • In this paper our aim is to establish some geometric properties (like starlikeness, convexity and close-to-convexity) for the generalized and normalized Dini functions. In order to prove our main results, we use some inequalities for ratio of these functions in normalized form and classical result of Fejer.