• Title/Summary/Keyword: Generalization of patterns

Search Result 71, Processing Time 0.023 seconds

A Study on Approaches to Algebra Focusing on Patterns and Generalization (패턴과 일반화를 강조한 대수 접근법 고찰)

  • 김성준
    • School Mathematics
    • /
    • v.5 no.3
    • /
    • pp.343-360
    • /
    • 2003
  • In this paper, we deal with the teaching of algebra based on patterns and generalization. The past algebra curriculum starts with letters(variables), algebraic expressions, and equations, but these formal approaching method has many difficulties in the school algebra. Therefore we insist the new algebraic approaches should be needed. In order to develop these instructions, we firstly investigate the relationship of patterns and algebra, the relationship of generalization and algebra, the steps of generalization from patterns and levels of difficulties. Next we look into the algebra instructions based arithmetic patterns, visual patterns and functional situations. We expect that these approaches help students learn algebra when they begin school algebra.

  • PDF

GENERALIZATION OF KEY DISTRIBUTION PATTERNS FOR EVERY n-PAIR OF USERS

  • Shin, Seon-Ho;Bate, Julia C.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.563-572
    • /
    • 2008
  • In this paper, we discuss about a generalization of the Key Distribution Pattern which was proposed by C. Mitchell and F. Piper[6]. It is allowing secure communication between every n-pair of users($n\leq2$) in a large network for reducing storage requirements. We further suggest a generalization of K. Quinn's bounds in [9] for the number of subkeys in such general Key Distribution Patterns.

  • PDF

On the design of a teaching unit for the exploration of number patterns in Pascal graphs and triangles applying theoretical generalization. (이론적 일반화를 적용한 파스칼 그래프와 삼각형에 내재된 수의 패턴 탐구를 위한 교수단원의 설계)

  • Kim, Jin Hwan
    • East Asian mathematical journal
    • /
    • v.40 no.2
    • /
    • pp.209-229
    • /
    • 2024
  • In this study, we design a teaching unit that constructs Pascal graphs and extended Pascal triangles to explore number patterns inherent in them. This teaching unit is designed to consider the diachronic process of teaching-learning by combining Dörfler's theoretical generalization model with Wittmann's design science ideas, which are applied to the didactical practice of mathematization. In the teaching unit, considering the teaching-learning level of prospective teachers who studied discrete mathematics, we generalize the well-known Pascal triangle and its number patterns to extended Pascal triangles which have directed graphs(called Pascal graphs) as geometric models. In this process, the use of symbols and the introduction of variables are exhibited as important means of generalization. It provides practical experiences of mathematization to prospective teachers by going through various steps of the generalization process targeting symbols. This study reflects Wittmann's intention in that well-understood mathematics and the context of the first type of empirical research as structure-genetic didactical analysis are considered in the design of the learning environment.

A study on the 6th graders' learning algebra through generalization of mathematical patterns (초등학교 6학년의 패턴의 일반화를 통한 대수 학습에 관한 연구)

  • Kim, Nam-Gyun;Lee, Eun-Suk
    • Communications of Mathematical Education
    • /
    • v.23 no.2
    • /
    • pp.399-428
    • /
    • 2009
  • 2007 Renewed Korea Elementary Mathematics Curriculum introduce algebra 6th grade. According to many studies about introducing algebra, it is desirable to teach 6th graders algebra through generalization of patterns. In this study, 6th graders' understanding processes and difficulties in pattern generalization were analyzed and possiblities of introducing algebra to 6th graders through pattern generalization were examined.

  • PDF

Examining the Students' Generalization Method in Relation with the Forms of Pattern - Focused on the 6th Grade Students - (패턴의 유형에 따른 학생들의 일반화 방법 조사 - 초등학교 6학년 학생들을 중심으로 -)

  • Lee, Muyng-Gi;Na, Gwi-Soo
    • School Mathematics
    • /
    • v.14 no.3
    • /
    • pp.357-375
    • /
    • 2012
  • This research intends to examine how 6th graders (age 12) generalize various increasing patterns. In this research, 6 problems corresponding to the ax, x+a, ax+c, ax2, and ax2+c patterns were given to 290 students. Students' generalization methods were analysed by the generalization level suggested by Radford(2006), such as arithmetic and algebraic (factual, contextual, and symbolic) generalization. As the results of the study, we identified that students revealed the most high performance in the ax pattern in the aspect of the algebraic generalization, and lower performance in the ax2, x+a, ax+c, ax2+c in order. Also we identified that students' generalization methods differed in the same increasing patterns. This imply that we need to provide students with the pattern generalization activities in various contexts.

  • PDF

A Comparison between Methods of Generalization according to the Types of Pattern of Mathematically Gifted Students and Non-gifted Students in Elementary School (초등수학영재와 일반학생의 패턴의 유형에 따른 일반화 방법 비교)

  • Yu, Mi Gyeong;Ryu, Sung Rim
    • School Mathematics
    • /
    • v.15 no.2
    • /
    • pp.459-479
    • /
    • 2013
  • The Purpose of this study was to explore the methods of generalization and errors pattern generated by mathematically gifted students and non-gifted students in elementary school. In this research, 6 problems corresponding to the x+a, ax, ax+c, $ax^2$, $ax^2+c$, $a^x$ patterns were given to 156 students. Conclusions obtained through this study are as follows. First, both group were the best in symbolically generalizing ax pattern, whereas the number of students who generalized $a^x$ pattern symbolically was the least. Second, mathematically gifted students in elementary school were able to algebraically generalize more than 79% of in x+a, ax, ax+c, $ax^2$, $ax^2+c$, $a^x$ patterns. However, non-gifted students succeeded in algebraically generalizing more than 79% only in x+a, ax patterns. Third, students in both groups failed in finding commonness in phased numbers, so they solved problems arithmetically depending on to what extent it was increased when they failed in reaching generalization of formula. Fourth, as for the type of error that students make mistake, technical error was the highest with 10.9% among mathematically gifted students in elementary school, also technical error was the highest as 17.1% among non-gifted students. Fifth, as for the frequency of error against the types of all patterns, mathematically gifted students in elementary school marked 17.3% and non-gifted students were 31.2%, which means that a majority of mathematically gifted students in elementary school are able to do symbolic generalization to a certain degree, but many non-gifted students did not comprehend questions on patterns and failed in symbolic generalization.

  • PDF

Didactical Applications of the Baduk Pieces Game (바둑돌 게임의 교수학적 활용)

  • Kim, Boo-Yoon;Lee, Ji-Sung
    • Journal for History of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.43-58
    • /
    • 2007
  • We review the eastern frog jump game and the western solitaire to apply the Baduk Pieces Game to mathematical education. This study introduce a didactical method of Baduk Pieces Game which is constructed with simplification, generalization, and extension. This didactical applications of the Baduk Pieces Game gives the students opportunities of patterns, generalization, and problem solving strategies.

  • PDF

A Comparison of Mathematically Gifted Students' Solution Strategies of Generalizing Geometric Patterns (초등학교 4,5,6학년 영재학급 학생의 패턴 일반화를 위한 해결 전략 비교)

  • Choi, Byoung Hoon;Pang, Jeong Suk
    • Journal of Educational Research in Mathematics
    • /
    • v.22 no.4
    • /
    • pp.619-636
    • /
    • 2012
  • The main purpose of this study was to explore the process of generalization generated by mathematically gifted students. Specifically, this study probed how fourth, fifth, and sixth graders might generalize geometric patterns and represent such generalization. The subjects of this study were a total of 30 students from gifted classes of one elementary school in Korea. The results of this study showed that on the question of the launch stage, students used a lot of recursive strategies that built mainly on a few specific numbers in the given pattern in order to decide the number of successive differences. On the question of the towards a working generalization stage, however, upper graders tend to use a contextual strategy of looking for a pattern or making an equation based on the given information. The more difficult task, more students used recursive strategies or concrete strategies such as drawing or skip-counting. On the question of the towards an explicit generalization stage, students tended to describe patterns linguistically. However, upper graders used more frequently algebraic representations (symbols or formulas) than lower graders did. This tendency was consistent with regard to the question of the towards a justification stage. This result implies that mathematically gifted students use similar strategies in the process of generalizing a geometric pattern but upper graders prefer to use algebraic representations to demonstrate their thinking process more concisely. As this study examines the strategies students use to generalize a geometric pattern, it can provoke discussion on what kinds of prompts may be useful to promote a generalization ability of gifted students and what sorts of teaching strategies are possible to move from linguistic representations to algebraic representations.

  • PDF

Generalization and Symbol Expression through Pattern Research - Focusing on Pictorial/Geometric Pattern - (패턴탐구를 통한 일반화와 기호표현 -시각적 패턴을 중심으로-)

  • Kang, Hyun-Yyoung
    • School Mathematics
    • /
    • v.9 no.2
    • /
    • pp.313-326
    • /
    • 2007
  • Recently in algebra curriculum, to recognizes and explains general nile expressing patterns is presented as the one alternative and is emphasized. In the seventh School Mathematic Curriculum regarding 'regularity and function' area, in elementary school curriculum, is guiding pattern activity of various form. But difficulty and problem of students are pointing in study for learning through pattern activity. In this article, emphasizes generalization process through research activity of pictorial/geometric pattern that is introduced much on elementary school mathematic curriculum and investigates various approach and strategy of student's thinking, state of symbolization in generalization process of pictorial/geometric pattern. And discusses generalization of pictorial/geometric pattern, difficulty of symbolization and suggested several proposals for research activity of pictorial/geometric pattern.

  • PDF

Spatiotemporal Moving Pattern Discovery using Location Generalization of Moving Objects (이동객체 위치 일반화를 이용한 시공간 이동 패턴 탐사)

  • Lee, Jun-Wook;Nam, Kwang-Woo
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1103-1114
    • /
    • 2003
  • Currently, one of the most critical issues in developing the service support system for various spatio-temporal applications is the discoverying of meaningful knowledge from the large volume of moving object data. This sort of knowledge refers to the spatiotemporal moving pattern. To discovery such knowledge, various relationships between moving objects such as temporal, spatial and spatiotemporal topological relationships needs to be considered in knowledge discovery. In this paper, we proposed an efficient method, MPMine, for discoverying spatiotemporal moving patterns. The method not only has considered both temporal constraint and spatial constrain but also performs the spatial generalization using a spatial topological operation, contain(). Different from the previous temporal pattern methods, the proposed method is able to save the search space by using the location summarization and generalization of the moving object data. Therefore, Efficient discoverying of the useful moving patterns is possible.