• Title/Summary/Keyword: General Walking

Search Result 306, Processing Time 0.028 seconds

A Development of 4-legged Walking Machine and the Enhancement of Static Stability Margin Using Balancing Weight (사각 보행 로보트의 제작 및 균형추를 이용한 안정성 향상에 관한 연구)

  • 강신천;오준호;정경민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.146-154
    • /
    • 1991
  • As the application of robotic systems expand its scope, more research efforts are given in providing mobility to the robotic systems so that they can travel across various paths including those with formidable obstacles such as stairways or rough terrains. Legged locomotion is mainly concerned because the walking motion, like that of animal behavior, has many advantages over wheel type or track type locomotion especially in rough terrain. Walking robot, in general, having a discrete number of legs, have inherently low static stability. Static stability can be increased to a certain degree, by improving walking method, but it has many limitations such as reduced travel speed. A very promising possibility lies in the use of balancing weight, nevertheless its actual implementation is very rare. In this study, a 4-legged walking machine is developed and the static stability margin is increased with the balancing weight. In the future, this robot will be used to take an experiment on the walking in mush terrain.

  • PDF

Use of Learning Based Neuro-fuzzy System for Flexible Walking of Biped Humanoid Robot (이족 휴머노이드 로봇의 유연한 보행을 위한 학습기반 뉴로-퍼지시스템의 응용)

  • Kim, Dong-Won;Kang, Tae-Gu;Hwang, Sang-Hyun;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.539-541
    • /
    • 2006
  • Biped locomotion is a popular research area in robotics due to the high adaptability of a walking robot in an unstructured environment. When attempting to automate the motion planning process for a biped walking robot, one of the main issues is assurance of dynamic stability of motion. This can be categorized into three general groups: body stability, body path stability, and gait stability. A zero moment point (ZMP), a point where the total forces and moments acting on the robot are zero, is usually employed as a basic component for dynamically stable motion. In this rarer, learning based neuro-fuzzy systems have been developed and applied to model ZMP trajectory of a biped walking robot. As a result, we can provide more improved insight into physical walking mechanisms.

  • PDF

The Compliance Control for Walking Stabilization of a Jointed-Leg Quadrupedal Robot (관절 구동형 4족보행 로봇의 보행 안정화를 위한 컴플라이언스 제어)

  • Lee, Su-Yeong;Hong, Ye-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1155-1165
    • /
    • 2000
  • Due to the irregularity of walking ground and the inaccuracy in trajectory control of a leg, the mechanical shock and slip on the ground can be caused in the landing and supporting legs of a walkin g robot, and the robot may lose walking stability. Especially in a jointed-leg type walking robot, those problems are much more severe than in the pantograph type since the leg-weight of the jointed-leg type walking robot is relatively heavier than that of the pantograph type in general. In order to secure the walking stability for the jointed-leg type quadrupedal robot under development in KIST(Korea Institute of Science and Technology), a balancing algorithm consisting of the leg compliance control and the body posture control is implemented in this paper, and the effectiveness of the algorithm is verified through experiments.

Walking Pattern Generation employing DAE Integration Method

  • Kang Yun-Seok;Park Jung-Hun;Yim Hong Jae
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.364-370
    • /
    • 2005
  • A stable walking pattern generation method for a biped robot is presented in this paper. In general, the ZMP (zero moment point) equations, which are expressed as differential equations, are solved to obtain a stable walking pattern. However, the number of differential equations is less than that of unknown coordinates in the ZMP equations. It is impossible to integrate the ZMP equations directly since one or more constraint equations are involved in the ZMP equations. To overcome this difficulty, DAE (differential and algebraic equation) solution method is employed. The proposed method has enough flexibility for various kinematic structures. Walking simulation for a virtual biped robot is performed to demonstrate the effectiveness and validity of the proposed method. The method can be applied to the biped robot for stable walking pattern generation.

Survey and Analysis of Pedestrians' Preferences on Walking Directions (보행자의 선호 보행방향에 관한 조사 및 분석)

  • Jung, In-Ju;Jung, Hwa-S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.75-83
    • /
    • 2007
  • Why do some countries walk on the right and others on the left? People have a dominant hand which leads to a natural tendency to favor one side of the road or another depending on the means of transportation being used. The primary objective of this study was to investigate the stereotype of Korean regarding preferred walking direction in encountering various facilities and provide the appropriate information to traffic policy makers. Six hundred Korean male and female subjects aging from 12 to 83 were selected to investigate the various statistics about their preferred walking direction and their employment characteristics on walking diverse facilities. The walking directions of eleven different facilities were asked along with other relative subjects' characteristics(e.g., age, gender, hand and foot dominance) to determine the relationship among these obtained data. The descriptive statistics showed that 73.7% and 26.3% were preferred walking right and left direction respectively. Moreover, various statistical analysis revealed that general tendency of walking direction was varied by hand and foot dominances. There were strong tendency that right-handed people prefer walking right side of the road and vise versa, hence this should be considered in setting up traffic policies. As a concluding remark, it is better to design traffic policies and regulations in the way that peoples' preference and expectation.

Modeling of Walking Loads for Floor Vibration Analysis (바닥판 진동해석을 위한 보행하중의 모형화)

  • 김기철;최균호;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.173-188
    • /
    • 2002
  • In General, the measured loads and load-time function suggested by Bachmann iota walking are used for vibration analysis of structures subjected to footstep loads. It is not easy to measure walking loads because they we influenced by various parameters. Therefore, it is needed to model the walking loads that can be applied to structure analysis. Parameter study is used for the walking loads having various walking frequency for vibration analysis of structures under walking loads. In this study, walking loads were measured directly by using a force plate within two load cells, and the parameters of the walking loads were analyzed. The measured walking loads are decomposed into harmonic loads by using the Fouler series. Functional relationship between the walking frequency and the Fourier coefficients can be derived from the coefficients of harmonic loads obtained by the decomposition process, and the walking loads were formulated. It is possible to apply the venerated walking loads easily or conveniently by the proposed equation to the analysis of a structure subjected to walking loads.

Analysis of Walking Speed According to Shoe type and Behavioral tasks (신발 유형과 행동 과제에 따른 보행 속도 분석)

  • Kim, Jae-Won;Jo, Yeon-Ha;Lee, Sun-Yeop;Lee, Mu-Ryeol;Kim, So-Jeong;Kim, Jin-A
    • Journal of Korean Clinical Health Science
    • /
    • v.5 no.4
    • /
    • pp.1015-1020
    • /
    • 2017
  • Purpose. Walking depends on the speed and type of shoe to be worn, and the degree of impact varies with the muscle used. In addition, the speed can be changed by moving objects and using objects when walking. This study analyzed the change of walking speed by applying various factors influencing walking. Methods. A total of 60 patients who had not undergone musculoskeletal diseases during the last 1 year were included. Shoe type was divided into slippers and shoe heels. Behavioral types were divided into bagging, books, and cell phone use. The walking speed was measured by the general walking, the middle walking, and the fast walking. The time was measured using a 10M linear distance test. The collected data were analyzed with SPSS program for independent samples t-test, one-way ANOVA. Results. There was a statistically significant difference according to the type of shoes when walking. Walking speed was slow in shoe heel. In addition, There was statistically significant difference according to type of behavior task at walking. Walking speed was slow in task type using mobile phone during walking. Conclusions. The walking speed were appeared difference in each type of shoe heel, using mobile phone.

Comparison of Both Legs EMG Symmetry during Over-Ground Walking and Stair Walking in Stroke Patients

  • Jeong, Mu-Geun;Kim, Joong-Hwi
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.4
    • /
    • pp.228-233
    • /
    • 2015
  • Purpose: Gait is the most basic element when evaluating the quality of life with activities of daily living under ordinary life circumstances. Symmetrical use of the lower extremities requires complicated coordination of all limbs. Thus, this study examined asymmetry of muscle activity quadriceps femoris and tibialis anterior as a baseline for training during over-ground walking and stair walking of stroke patients. Methods: Subjects were 14 stroke patients included as one experimental group. Gait speed used in this study was determined by the subject. Low extremity paretic and non-paretic EMG was compared using the surface EMG system. Results: The low extremity EMG difference was statistically significant during over-ground walking and stair walking (p<0.05). The result of low extremity EMG substituted symmetry ratio formula was compared to EMG symmetry ratio in both legs during over-ground walking and stair walking. The average symmetry ratio of quadriceps femoris during over-ground walking was 0.65, and average symmetry ratio of quadriceps femoris during stair walking was 0.47, with significant difference (p<0.05). Conclusion: EMG data was higher in stair walking than over-ground walking. However, in the comparison of symmetry ratio, asymmetric EMG of quadriceps femoris was significantly increased during stair walking. These findings suggested that application of stair walking for strengthening of both legs can be positive, but the key factor is maintaining asymmetrical posture of both legs. Therefore, physical therapists should make an effort to reduce asymmetry of quadriceps femoris power during stair walking by stroke patients.

Effect of Visual Feedback Training of Core Strength on Coordination, Balance and Walking Ability of Stroke Patients (코어강화를 동반한 시각적 되먹임 훈련이 뇌졸중 환자의 협응력, 균형과 보행능력에 미치는 영향)

  • Yoon, Sam-Won;Son, Ho-Hee
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.4
    • /
    • pp.145-153
    • /
    • 2020
  • PURPOSE: This study compares the effects of HUBER rehabilitation and general rehabilitation treatment on the coordination, balance, and walking ability of stroke patients. METHODS: This study enrolled 38 randomized stroke patients, and data was collected for 6 weeks. All participants were randomly assigned to either the experimental group (n = 19) or control group (n = 19). The experimental group were administered Huber rehabilitation and general rehabilitation treatment. The control group was given only general rehabilitation treatment. Both treatments were conducted for 30 minutes during each training session, 3 training sessions per week, for 6 weeks. The coordination, balance, and walking ability were evaluated before and after the intervention, to compare the intergroup and intragroup changes. RESULTS: Change in the right LOS (limit of stability) (p < .001) and forward LOS (p < .02) following intervention were significantly greater in the experimental group than in the control group, but no significant group difference was observed between left LOS (p > .1) and backward LOS (p > .2). Alterations in coordination (p < .02) and TUG (p <. 05) were significantly greater after intervention in the experimental group than in the control group. CONCLUSION: These findings suggest that HUBER rehabilitation is effective in improving the coordination, balance, and walking ability in stroke patients. To strengthen and validate the results of this study, future studies related to HUBER rehabilitation are required.

Effects of Pressure Sense Perception Training on Unstable Surface on Somatosensory, Balance and Gait Function in Patients with Stroke

  • Kim, Bo-seul;Bang, Dae-hyouk;Shin, Won-seob
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.3
    • /
    • pp.19-27
    • /
    • 2015
  • PURPOSE: This study aimed to investigate the effects of pressure sense perception training (PSPT) on various surfaces on the somatosensory system, balance, and walking ability in chronic stroke patients. METHODS: Thirty patients with stroke participated in this study and were randomly assigned to one of three groups; group 1 received the general physical therapy and the PSPT on a stable surface, group 2 received the general physical therapy and the PSPT on an unstable surface, and group 3 received the general physical therapy alone. Participants in group 1 and group 2 underwent 30 min/session, 3 days per week, for 4 weeks. Pressure error (PE) was used to evaluate changes of proprioception. The Balancia, Functional reach test (FRT), and Timed Up and Go (TUG) were used to assess the balance ability, and the 10m Walking Test (10-MWT) was used to assess walking ability. RESULTS: Experimental groups (group 1 and group 2) showed significant differences in PE, FRT, TUG, and 10-MWT compared to the control group (p <0.05). Group 2 (PSPT on an unstable surface) was significantly different in PE, FRT, and 10-MWT from group 1 (p <0.05). No significant differences were observed for other measures. CONCLUSION: Pressure sense perception training on an unstable surface might be a significantly more effective method for improving somatosensory function, balance, and walking ability, than PSPT on a stable surface.