• Title/Summary/Keyword: General Inverse

Search Result 334, Processing Time 0.023 seconds

The Development of an Inverse Kinematic Solution for Periodic Motion of a Redundant Manipulator (여유자유도 로봇의 주기적 운동제어를 위한 역기구학 해의 개발)

  • 정용섭;최용제
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.142-149
    • /
    • 1995
  • This paper presents a new kinematic control strategy for serial redundant manipulators which gives repeatability in the joint space when the end-effector undergoes some general cyclic motions. Theoretical development has been accomplished by deriving a new inverse kinematic equation that is based on springs being conceptually located in the joints of the manipulator. Although some inverse kinematic equations for serial redundant manipulators have been derived by many researchers, the new strategy is the first to include the free angles of torsional springs and the free lengths of the translational springs. This is important because it ensures repeatability in the joint space of a serial redundant manipulator whose end-effector undergoes a cyclic type motion. Numerical verification for repeatability is done in terms of Lie Bracket Condition. Choices for the free angle and torsional stiffness of a joint (or the free length and translational stiffness) are made based upon the mechanical limits of the joints.

THE GENERALIZED INVERSE ${A_{T,*}}^{(2)}$ AND ITS APPLICATIONS

  • Cao, Chong-Guang;Zhang, Xian
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.155-164
    • /
    • 2003
  • The existence and representations of some generalized inverses, including ${A_{T,*}}^{(2)},\;{A_{T,*}}^{(1,2)},\;{A_{T,*}}^{(2,3)},\;{A_{*,S}}^{(2)},\;{A_{*,S}}^{(1,2)}\;and\;{A_{*,S}}^{(2,4)}$, are showed. As applications, the perturbation theory for the generalized inverse {A_{T,S}}^{(2)} and the perturbation bound for unique solution of the general restricted system $A_{x}$ = b(dim(AT)=dimT, $b{\in}AT$ and $x{\in}T$) are studied. Moreover, a characterization and representation of the generalized inverse ${A_{T,*}}^{(2)}$ is obtained.

Determination of Unknown Time-Dependent Heat Source in Inverse Problems under Nonlocal Boundary Conditions by Finite Integration Method

  • Areena Hazanee;Nifatamah Makaje
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.2
    • /
    • pp.353-369
    • /
    • 2024
  • In this study, we investigate the unknown time-dependent heat source function in inverse problems. We consider three general nonlocal conditions; two classical boundary conditions and one nonlocal over-determination, condition, these genereate six different cases. The finite integration method (FIM), based on numerical integration, has been adapted to solve PDEs, and we use it to discretize the spatial domain; we use backward differences for the time variable. Since the inverse problem is ill-posed with instability, we apply regularization to reduce the instability. We use the first-order Tikhonov's regularization together with the minimization process to solve the inverse source problem. Test examples in all six cases are presented in order to illustrate the accuracy and stability of the numerical solutions.

G-Inverse and SAS IML for Parameter Estimation in General Linear Model (선형 모형에서 모수 추정을 위한 일반화 역행렬 및 SAS IML 이론에 관한 연구)

  • Choi, Kuey-Chung;Kang, Kwan-Joong;Park, Byung-Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.373-385
    • /
    • 2007
  • The solution of the normal equation arising in a general linear model by the least square methods is not unique in general. Conventionally, SAS IML and G-inverse matrices are considered for such problems. In this paper, we provide a systematic solution procedures for SAS IML.

Analysis on the Walking Volumes of a Hexapod System with General 3R Link Legs (일반적 3R 링크를 갖는 6각 보행로봇 다리의 보행체적에 대한 해석)

  • Han, Gyu-Beom;Yang, Chang-Il;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2205-2212
    • /
    • 1996
  • In order to move the body of a walking robot translationally, and step over the obstacles, the walking robot must have at least 3 degrees of freedom for each leg. Therefore each leg of the general walking robots can be composed of 3-link system with 3 revolute joints. In this paper, the colsed form of inverse kinimatic solutions is shown for this general 3R linkage. Moreover, in order to have efficient walking volume in rough terrain, the workspace of each log is obtained considering the twist angles and the offsets in D-H parameters. When we design a walking robot, the information of the walking volume is needed for planning desired trajectories of the feet effectively. Appropriate knowledge of the walking volume can also be used to maximize linear or angular velocity of minimize power of stress. However, since it is impossible to obrain the information of walking volume in 3-D space directly from the kinematic equations, the walking volume can be searched through the edge detection algorithm using the triangle tracer with closed from inverse kinematic solutions. In this study, we present the closed form inverse kinematic solutions for 3R linkage model, and the walking volume of 6 legged walking robot which is modeled after the darking bettle, Eleodes obscura sulcipennis, through the method of edge detection for an arbitrary 2 dimensional shape using triangle tracer.

Simplified Approach for Distortion Estimation in H.264 (H.264에서 간소화된 기법에 의한 왜곡치 예측)

  • Park, Ki-Hong;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.446-451
    • /
    • 2010
  • This paper addressed an another scheme of distortion estimation method based on simplified inverse quantization in H.264/AVC. The distortion is calculated by the difference of coefficient between quantized transform coefficients and that of inverse. In general, these process included such transforms as discrete cosine transform(DCT), quantization, inverse quantization(IQ), and Inverse DCT(IDCT). In proposed approach, IQ as well as IDCT process are skipped because of replacing a couple of approximated formulas. Some simulation have been conducted and it showed that the PSNR was almost the same, and reduced the rate-distortion optimization(RDO) mode decision time of 8~15% in comparison with conventional method.

Inverse Estimation of Surface Temperature Using the RBF Network (RBF Network 를 이용한 표면온도 역추정에 관한 연구)

  • Jung, Bup-Sung;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1183-1188
    • /
    • 2004
  • The inverse heat conduction problem (IHCP) is a problem of estimating boundary condition from temperature measurement at one or more interior points. Neural networks are general information processing systems inspired by the connectionist theory of human brain. By properly training the network by the learning rule, the neural network method can handle many non-linear or other complex problems. In this work, neural network is applied to complicated inverse heat conduction problems. Efficiency of the procedure is enhanced by incorporating the radial basis functions (RBF). The RBF is trained faster than other neural network and can find smooth solution. In order to demonstrate the effectiveness of the current scheme, a typical one-dimensional IHCP is considered. At one surface, the temperature as well as the heat flux is known. The unknown temperature of interest is estimated on the other side of the slab. The results from the proposed method based on RBF neural network are compared with the conventional method.

  • PDF

A REPRESENTATION FOR AN INVERSE GENERALIZED FOURIER-FEYNMAN TRANSFORM ASSOCIATED WITH GAUSSIAN PROCESS ON FUNCTION SPACE

  • Choi, Jae Gil
    • The Pure and Applied Mathematics
    • /
    • v.28 no.4
    • /
    • pp.281-296
    • /
    • 2021
  • In this paper, we suggest a representation for an inverse transform of the generalized Fourier-Feynman transform on the function space Ca,b[0, T]. The function space Ca,b[0, T] is induced by the generalized Brownian motion process with mean function a(t) and variance function b(t). To do this, we study the generalized Fourier-Feynman transform associated with the Gaussian process Ƶk of exponential-type functionals. We then establish that a composition of the Ƶk-generalized Fourier-Feynman transforms acts like an inverse generalized Fourier-Feynman transform.

Wave propagation of FGM plate via new integral inverse cotangential shear model with temperature-dependent material properties

  • Mokhtar Ellali;Mokhtar Bouazza;Ashraf M. Zenkour
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.427-437
    • /
    • 2023
  • The objective of this work is to study the wave propagation of an FGM plate via a new integral inverse shear model with temperature-dependent material properties. In this contribution, a new model based on a high-order theory field of displacement is included by introducing indeterminate integral variables and inverse co-tangential functions for the presentation of shear stress. The temperature-dependent properties of the FGM plate are assumed mixture of metal and ceramic, and its properties change by the power functions of the thickness of the plate. By applying Hamilton's principle, general formulas of wave propagation were obtained to plot the phase velocity curves and wave modes of the FGM plate with simply supported edges. The effects of the temperature and volume fraction by distributions on wave propagation of the FGM plate are investigated in detail. The results of the dispersion and the phase velocity curves of the propagation wave in the functionally graded plate are compared with previous research.

New Continuous Variable Space Optimization Methodology for the Inverse Kinematics of Binary Manipulators Consisting of Numerous Modules (수많은 모듈로 구성된 이진 매니플레이터 역기구 설계를 위한 연속변수공간 최적화 신기법 연구)

  • Jang Gang-Won;Nam Sang Jun;Kim Yoon Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1574-1582
    • /
    • 2004
  • Binary manipulators have recently received much attention due to hyper-redundancy, light weight, good controllability and high reliability. The precise positioning of the manipulator end-effecter requires the use of many modules, which results in a high-dimensional workspace. When the workspace dimension is large, existing inverse kinematics methods such as the Ebert-Uphoff algorithm may require impractically large memory size in determining the binary positions of all actuators. To overcome this limitation, we propose a new inverse kinematics algorithm: the inverse kinematics problem is formulated as an optimization problem using real-valued design variables, The key procedure in this approach is to transform the integer-variable optimization problem to a real-variable optimization problem and to push the real-valued design variables as closely as possible to the permissible binary values. Since the actual optimization is performed in real-valued design variables, the design sensitivity becomes readily available, and the optimization method becomes extremely efficient. Because the proposed formulation is quite general, other design considerations such as operation power minimization can be easily considered.