• 제목/요약/키워드: Gene repression

검색결과 169건 처리시간 0.026초

MicroRNAs in Human Diseases: From Cancer to Cardiovascular Disease

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • 제11권3호
    • /
    • pp.135-154
    • /
    • 2011
  • The great discovery of microRNAs (miRNAs) has revolutionized current cell biology and medical science. miRNAs are small conserved non-coding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region of specific messenger RNAs for degradation or translational repression. New members of the miRNA family are being discovered on a daily basis and emerging evidence has demonstrated that miRNAs play a major role in a wide range of developmental process including cell proliferation, cell cycle, cell differentiation, metabolism, apoptosis, developmental timing, neuronal cell fate, neuronal gene expression, brain morphogenesis, muscle differentiation and stem cell division. Moreover, a large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as cancer, psychiatric and neurological diseases, cardiovascular disease, and autoimmune disease. Interestingly, in addition, miRNA deficiencies or excesses have been correlated with a number of clinically important diseases ranging from cancer to myocardial infarction. miRNAs can repress the gene translation of hundreds of their targets and are therefore well-positioned to target a multitude of cellular mechanisms. As a consequence of extensive participation in normal functions, it is quite logical to ask the question if abnormalities in miRNAs should have importance in human diseases. Great discoveries and rapid progress in the past few years on miRNAs provide the hope that miRNAs will in the near future have a great potential in the diagnosis and treatment of many diseases. Currently, an explosive literature has focussed on the role of miRNA in human cancer and cardiovascular disease. In this review, I briefly summarize the explosive current studies about involvement of miRNA in various human cancers and cardiovascular disease.

MicroRNAs and Metastasis-related Gene Expression in Egyptian Breast Cancer Patients

  • Hafez, Mohamed M.;Hassan, Zeinab K.;Zekri, Abdel Rahman N.;Gaber, Ayman A.;Rejaie, Salem S. Al;Sayed-Ahmed, Mohamed M.;Shabanah, Othman Al
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권2호
    • /
    • pp.591-598
    • /
    • 2012
  • Aim and background: MicroRNAs (miRNAs) are a class of naturally occurring small noncoding RNAs that regulate gene expression, cell growth, differentiation and apoptosis by targeting mRNAs for translational repression or cleavage. The present study was conducted to study miRNAs in Egyptian breast cancer (BC) and their relation to metastasis, tumor invasion and apoptosis in addition to their association with the ER and PR statuses. Methods: Real Time RT-PCR was performed to identify the miRNA expression level of eight miRNAs and eight metastatic-related genes in 40 breast cancer samples and their adjacent non-neoplastic tissues. The expression levels of each miRNA relative to U6 RNA were determined using the $^{2-{\Delta}}CT$ method. Also, miRNA expression profiles of the BC and their corresponding ANT were evaluated. Results: The BC patients showed an up-regulation in miRNAs (mir-155, mir-10, mir-21 and mir-373) with an upregulation in MMP2, MMp9 and VEGF genes. We found down regulation in mir-17p, mir-126, mir-335, mir-30b and also TIMP3, TMP1 and PDCD4 genes in the cancer tissue compared to the adjacent non-neoplastic tissues. Mir -10b, mir -21, mir-155 and mir373 and the metastatic genes MMP2, MMP9 and VEGF were significantly associated with an increase in tumor size (P < 0.05). No significant difference was observed between any of the studied miRNAs regarding lymph node metastasis. Mir-21 was significantly over-expressed in ER-/PR-cases. Conclusion: Specific miRNAs (mir-10, mir-21, mir-155, mir-373, mir-30b, mir-126, mir-17p, mir-335) are associated with tumor metastasis and other clinical characteristics for BC, facilitating identification of individuals who are at risk.

Characterization of the Catabolite Control Protein (CcpA) Gene from Leuconostoc mesenteroides SY1

  • PARK JAE-YONG;PARK JIN-SIK;KIM JONG-HWAN;JEONG SEON-JU;CHUN JIYEON;LEE JONG-HOON;KIM JEONG HWAN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.749-755
    • /
    • 2005
  • The ccpA gene encoding catabolite control protein A (CcpA) of Leuconostoc mesenteroides SYl, a strain isolated from kimchi, was cloned, sequenced, analyzed for transcript, and overexpressed in Escherichia coli. The ccpA ORF (open reading frame) is 1,011 bp in size, which can encode a protein of 336 amino acid residues with a molecular mass of 36,739 Da. The transcription start site was mapped at a position 49 nucleotides upstream of the start codon, and promoter sequences were also identified. The putative cre site overlapped with the -35 promoter sequence. The deduced amino acid sequence of the CcpA contained the helix-turn-helix motif found in many DNA-binding regulatory proteins. CcpA from 1. mesenteroides SY1 had $54.6\%$ identity with CcpA from Lactobacillus casei. The Northern blot experiment showed that ccpA was transcribed as a single 1.1 kb transcript, and transcription was repressed when grown on media containing glucose. CcpA was overproduced in E. coli BL21(DE3) cells using the pET expression vector, and purified to an apparent homogeneity. Gel Mobility Shift Assay with purified CcpA and a DNA fragment containing the ere sequence of the $\alpha$-galactosidase gene (aga) from L. mesenteroides SY1 revealed that CcpA bound specifically to the cre site of aga.

재조합 Saccharomyces cerevisiae에서 Invertase의 발현에 대한 Sucrose의 영향 (Effects of Sucrose on Invertase Expression in Recombinant Saccharornyces cerevisiae)

  • 임형권;김기홍;서진호
    • 한국미생물·생명공학회지
    • /
    • 제20권4호
    • /
    • pp.417-421
    • /
    • 1992
  • Sucrose에 의한 재조합 Saccharomyces cerevisiae의 invertase 생성 양성을 이단계 배양을 통하여 관찰하였다. 포도당 배지에서 SUC2 유전자의 발현이 억제된 상태에서 발현배지의 sucrose 농도가 2$g/\ell$일 경우 invertase 최대 비역가는 10 units로 5$g/\ell$보다 40% 향상된 값을 보여주었다. 발현배지에서의 당의 농도변화와 invertase 발현은 서로 대응관계가 있음을 발견하였다. 초기에는 SUC2 유전자가 발현되어 invertase가 생성 분비되어서 배지중 sucrose를 포도당과 과당으로 분해하였다. 분해된 포도당의 농도가 2$g/\ell$ 이상이 되면 invertase 생성은 다시 억제되었다. 동시에 미생물에 생육에 의해 포도당 농도가 2$g/\ell$이하로 감소되면서 다시 invertase 생성이 유도되었다. 이러한 현사은 5$g/\ell$의 sucrose 배지에서 더욱 현저하게 관찰 할 수 있었다. 발현배지의 온도를 $35^{\circ}C$증가시켰을 경우 invertase 생성은 $30^{\circ}C$보다 약 1.7배만큼 증가하였다.

  • PDF

Anti-apoptotic Effects of Red Ginseng on Oxidative Stress Induced by Hydrogen Peroxide in SK-N-SH Cells

  • Kim, Eun-Hye;Lee, Mi-Jeong;Kim, In-Hye;Pyo, Suhk-Neung;Choi, Kwang-Tae;Rhee, Dong-Kwon
    • Journal of Ginseng Research
    • /
    • 제34권2호
    • /
    • pp.138-144
    • /
    • 2010
  • Ginseng (Panax ginseng C.A. Meyer) has been shown to have anti-stress effects in animal studies. However, most studies have only managed to detect altered levels of biomarkers or enzymes in blood or tissue, and the actual molecular mechanisms by which ginseng exerts these effects remain unknown. In this study, the anti-oxidative effect of Korean red ginseng (KRG) was examined in human SK-N-SH neuroblastoma cells. Incubation of SK-N-SH cells with the oxidative stressor hydrogen peroxide resulted in significant induction of cell death. In contrast, pre-treatment of cells with KRG decreased cell death significantly. To elucidate underlying mechanisms by which KRG inhibited cell death, the expression of apoptosis-related proteins was examined by Western blot analysis. KRG pre-treatment decreased the expression of the pro-apoptotic gene caspase-3, whereas it increased expression of the anti-apoptotic gene Bcl-2. Consistent with this, immunoblot analysis showed that pre-treatment of the SK-N-SH cells with KRG inhibited expression of the pro-inflammatory gene cyclooxygenase 2 (COX-2). RT-PCR analysis revealed that the repression of COX-2 expression by KRG pre-treatment occurred at the mRNA level. Taken together, our data indicate that KRG can protect against oxidative stress-induced neuronal cell death by repressing genes that mediate apoptosis and inflammation.

각종 탄소원이 $velA^+$ 및 velA1 Aspergillus nidulans의 분화에 미치는 영향 (Effect of Various Carbon Sources on the Development of Aspergillus nidulans with $velA^+$ or velA1 allele)

  • 한동민;한유정;채건상;장광엽;이영훈
    • 한국균학회지
    • /
    • 제22권4호
    • /
    • pp.332-337
    • /
    • 1994
  • Under standard condition (Han, et al., 1990: glucose 1%-nitrate 0.1% minimal medium, 30 ml in 9 cm plate, $10^6$ cells of inoculum per plate), wild type of Aspergillus nidulans developed both sexual and asexual organs in ballance, while velA1 mutant developed asexual ones preferentially. Increase of glucose concentration did not significantly affect the asexual sporulation. However, development of sexual organs were largely affected. It was greatly enhanced when favorable nitrogen source, for example, casein hydrolysate was added, which is contrary to the case of Neurospora or Saccharomyces where limitation of N source induces sexual development. On most of moderate C sources asexual development in $velA^+$ strain was largely inhibited except acetate on which only asexual spores were produced, while that in velA1 mutant strain was not affected. Lactose promoted the sexual development even in velA1 mutant indicating that lactose itself or its metabolic intermediate may induce sexual development independent of allelic state of velA gene. On other moderate favorable C sources, glycerol, galactose and ethanol, asexual development was largely inhibited in $velA^+$ strain but not in velA1 mutant strain. Sexual organs were, however, never produced on acetate. These results suggested that asexual development of wild type is largely dependent on C sources and the velA gene is involved in the repression of asexual development in not-enough-grown (non-competent) thalli resulting in preferential progression of sexual development.

  • PDF

분열효모에서 spDbp5 유전자의 결실돌연변이 제조와 기능에 대한 연구 (Construction of spDbp5 Null Mutants Defective in mRNA Export)

  • 배진아;조현진;윤진호
    • 미생물학회지
    • /
    • 제44권1호
    • /
    • pp.80-84
    • /
    • 2008
  • mRNA의 핵에서 세포질로의 이동에 중요한 역할을 하는 발아효모 Saccharomyces cerevisiae의 DEAD-box RNA helicase인 DBP5 유전자와 유사한 분열효모 Schizosaccharomyces pombe의 유전자(spDbp5로 명명)의 결실돌연변이주(knockout mutant)를 제조하여 그 특성을 조사하였다. 이배체인 S. pombe 균주에 하나의 spDbp5 유전자만을 결실시킨 후 4분체분석(tetrad analysis)을 수행한 결과, 이 유전자가 결실된 반수체 균주는 생장하지 못했다. mRNA의 핵에서 세포질로의 이동에 있어서 spDbp5의 역할을 알아보기 위해, spDbp5의 발현이 티아민(thiamin)에 의해 억제되는 균주를 제작하여 in situ hybridization을 통해 세포 내의 $poly(A)^+$ RNA 분포를 살펴보았다. spDbp5 유전자의 발현이 억제되면, $poly(A)^+$ RNA가 핵 안에 축적되고세포질에서는 줄어들었다. 이와 같은 결과들은 spDbp5 유전자 역시 mRNA의 핵에서 세포질로의 이동에 매우 중요한 역할을 담당하고 있음을 시사한다.

PRR11 and SKA2 gene pair is overexpressed and regulated by p53 in breast cancer

  • Wang, Yitao;Zhang, Chunxue;Mai, Li;Niu, Yulong;Wang, Yingxiong;Bu, Youquan
    • BMB Reports
    • /
    • 제52권2호
    • /
    • pp.157-162
    • /
    • 2019
  • Our previous study found that two novel cancer-related genes, PRR11 and SKA2, constituted a classic gene pair that was regulated by p53 and NF-Y in lung cancer. However, their role and regulatory mechanism in breast cancer remain elusive. In this study, we found that the expression levels of PRR11 and SKA2 were upregulated and have a negative prognotic value in breast cancer. Loss-of-function experiments showed that RNAi-mediated knockdown of PRR11 and/or SKA2 inhibited proliferation, migration, and invasion of breast cancer cells. Mechanistic experiments revealed that knockdown of PRR11 and/or SKA2 caused dysregulation of several downstream genes, including CDK6, TPM3, and USP12, etc. Luciferase reporter assays demonstrated that wild type p53 significantly repressed the PRR11-SKA2 bidirectional promoter activity, but not NF-Y. Interestingly, NF-Y was only essential for and correlated with the expression of PRR11, but not SKA2. Consistently, adriamycin-induced (ADR) activation of endogenous p53 also caused significant repression of the PRR11 and SKA2 gene pair expression. Notably, breast cancer patients with lower expression levels of either PRR11 or SKA2, along with wild type p53, exhibited better disease-free survival compared to others with p53 mutations and/or higher expression levels of either PRR11 or SKA2. Collectively, our study indicates that the PRR11 and SKA2 transcription unit might be an oncogenic contributor and might serve as a novel diagnostic and therapeutic target in breast cancer.

YY1 and CP2c in Unidirectional Spermatogenesis and Stemness

  • Cheon, Yong-Pil;Choi, Donchan;Lee, Sung-Ho;Kim, Chul Geun
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권4호
    • /
    • pp.249-261
    • /
    • 2020
  • Spermatogonial stem cells (SSCs) have stemness characteristics, including germ cell-specific imprints that allow them to form gametes. Spermatogenesis involves changes in gene expression such as a transition from expression of somatic to germ cell-specific genes, global repression of gene expression, meiotic sex chromosome inactivation, highly condensed packing of the nucleus with protamines, and morphogenesis. These step-by-step processes finally generate spermatozoa that are fertilization competent. Dynamic epigenetic modifications also confer totipotency to germ cells after fertilization. Primordial germ cells (PGCs) in embryos do not enter meiosis, remain in the proliferative stage, and are referred to as gonocytes, before entering quiescence. Gonocytes develop into SSCs at about 6 days after birth in rodents. Although chromatin structural modification by Polycomb is essential for gene silencing in mammals, and epigenetic changes are critical in spermatogenesis, a comprehensive understanding of transcriptional regulation is lacking. Recently, we evaluated the expression profiles of Yin Yang 1 (YY1) and CP2c in the gonads of E14.5 and 12-week-old mice. YY1 localizes at the nucleus and/or cytoplasm at specific stages of spermatogenesis, possibly by interaction with CP2c and YY1-interacting transcription factor. In the present article, we discuss the possible roles of YY1 and CP2c in spermatogenesis and stemness based on our results and a review of the relevant literature.

Assessment of Relationship between Wilms' Tumor Gene (WT1) Expression in Peripheral Blood of Acute Leukemia Patients and Serum IL-12 and C3 Levels

  • Rezai, Omran;Khodadadi, Ali;Heike, Yuji;Mostafai, Ali;Gerdabi, Nader Dashti;Rashno, Mohammad;Abdoli, Zahra
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.7303-7307
    • /
    • 2015
  • Background: Leukemia is a common cancer among children and adolescents. Wilms' tumor gene (WT1) is highly expressed in patients with acute leukemia. It is found as a tumor associated antigen (TAA) in various types of hematopoietic malignancies and can be employed as a useful marker for targeted immunotherapy and monitoring of minimal residual disease (MRD). In this regard, WT1 is a transcription factor that promotes gene activation or repression depending on cellular and promoter context. The purpose of this study was assessment of WT1 gene expression in patients with acute leukemia, measurement of IL-12 and C3 levels in serum and evaluation of the relationship between them. Materials and Methods: We evaluated the expression of WT1 mRNA using real-time quantitative RT-PCR and serum levels of IL-12 and C3 using ELISA and nephelometry in peripheral blood of 12 newly diagnosed patients with acute leukemia and 12 controls. Results: The results of our study showed that the average wT1 gene expression in patients was 7.7 times higher than in healthy controls (P <0.05). In addition, IL-12 (P = 0.003) and C3 (P <0.0001) were significantly decreased in the test group compared to controls. Conclusions: WT1 expression levels are significantly higher in patients compared with control subjects whereas serum levels of interleukin-12 and C3 are significantly lower in patients. Wt1 expression levels in patients are inversely related with serum levels of IL-12 and C3.