References
- Asangani IA, Rasheed SA, Nikolova DA, et al (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27, 2128-36. https://doi.org/10.1038/sj.onc.1210856
- Bartels CL, Tsongalis GJ (2009). MicroRNAs: novel biomarkers for human cancer. Clin Chem, 55, 623-31. https://doi.org/10.1373/clinchem.2008.112805
- Borchert GM, Lanier W, Davidson BL (2006). RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol, 13, 1097-101. https://doi.org/10.1038/nsmb1167
- Boxler S, Djonov V, Kessler TM, et al (2010). Matrix Metalloproteinases and Angiogenic Factors. Predictors of Survival after Radical Prostatectomy for Clinically Organ- Confined Prostate Cancer? Am J Pathol, ?, ?-?. https://doi.org/10.2353/ajpath.2010.091190
- Burg-Roderfeld M, Roderfeld M, Wagner S, et al (2007). MMP- 9-hemopexin domain hampers adhesion and migration of colorectal cancer cells. Int J Oncol, 30, 985-92.
- Calin GA, Ferracin M, Cimmino A, et a. (2005). A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med, 353, 1793- 801. https://doi.org/10.1056/NEJMoa050995
- Chan DT, Poon WS, Chan YL, et al (2005). Temozolomide in the treatment of recurrent malignant glioma in Chinese patients. Hong Kong Med J, 11, 452-6.
- Chang TC, Wentzel EA, Kent OA, et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell, 26, 745-52. https://doi.org/10.1016/j.molcel.2007.05.010
- Chen LH, Chiou GY, Chen YW, et al (2010). microRNA and aging: a novel modulator in regulating the aging network. Ageing Res Rev, 9, 59-66. https://doi.org/10.1016/j.arr.2010.08.002
- Cheng AM, Byrom MW, Shelton J, et al (2005). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis."Nucleic Acids Res, 33, 1290-7. https://doi.org/10.1093/nar/gki200
- Cho WC (2007). OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer, 6, 60. https://doi.org/10.1186/1476-4598-6-60
- Chu D, Zhang Z, Li Y, et al (2011). Matrix metalloproteinase-9 is associated with disease-free survival and overall survival in patients with gastric cancer. Int J Cancer, 129, 887-95. https://doi.org/10.1002/ijc.25734
- Cmarik JL, Min H, Hegamyer G, et al (1999). Differentially expressed protein Pdcd4 inhibits tumor promoter-induced neoplastic transformation. Proc Natl Acad Sci USA, 96, 14037-42. https://doi.org/10.1073/pnas.96.24.14037
- Corney DC, Nikitin AY (2008). MicroRNA and ovarian cancer. Histol Histopathol, 23, 1161-9.
- Croce CM (2009). Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet, 10, 704-14. https://doi.org/10.1038/nrg2634
- Curran S, Murray GI (2000). Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis." Eur J Cancer, 36, 1621-30. https://doi.org/10.1016/S0959-8049(00)00156-8
- Esquela-Kerscher A and Slack FJ (2006). "Oncomirs - microRNAs with a role in cancer." Nat Rev Cancer, 6, 259-69. https://doi.org/10.1038/nrc1840
- Fassina G, Ferrari N, Brigati C, et al. (2000). Tissue inhibitors of metalloproteases: regulation and biological activities. Clin Exp Metastasis, 18, 111-20. https://doi.org/10.1023/A:1006797522521
- Frankel LB, Christoffersen NR, Jacobsen A, et al (2008). Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem, 283, 1026-33. https://doi.org/10.1074/jbc.M707224200
- Gomez DE, Alonso DF, Yoshiji H, et al. (1997). Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol, 74, 111-22.
- Gregory RI, Shiekhattar R (2005). MicroRNA biogenesis and cancer. Cancer Res, 65, 3509-12. https://doi.org/10.1158/0008-5472.CAN-05-0298
- Hicklin DJ, Ellis LM (2005). Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol, 23, 1011-27. https://doi.org/10.1200/JCO.2005.06.081
- Huang Q, Gumireddy K, Schrier M, et al (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol, 10, 202-10. https://doi.org/10.1038/ncb1681
- Iorio MV, Ferracin M, Liu CG, et al (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 65, 7065-70. https://doi.org/10.1158/0008-5472.CAN-05-1783
- Iorio MV, Visone R, Di Leva G, et al (2007). MicroRNA signatures in human ovarian cancer. Cancer Res, 67, 8699- 707. https://doi.org/10.1158/0008-5472.CAN-07-1936
- Jemal A, Siegel R, Ward E, et al (2009). Cancer statistics, 2009. CA Cancer J Clin, 59, 225-49. https://doi.org/10.3322/caac.20006
- Jiang J, Lee EJ, Gusev Y, et al (2005). Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res, 33, 5394-403. https://doi.org/10.1093/nar/gki863
- Jones JL, Glynn P, Walker RA (1999). Expression of MMP-2 and MMP-9, their inhibitors, and the activator MT1-MMP in primary breast carcinomas. J Pathol, 189, 161-8. https://doi.org/10.1002/(SICI)1096-9896(199910)189:2<161::AID-PATH406>3.0.CO;2-2
- Kulshreshtha R, Ferracin M, Wojcik SE, et al. (2007). A microRNA signature of hypoxia. Mol Cell Biol, 27, 1859-67. https://doi.org/10.1128/MCB.01395-06
- Lee Y, Ahn C, Han J, et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425, 415-9. https://doi.org/10.1038/nature01957
- Lee Y, Kim M, Han J, et al (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 23, 4051-60. https://doi.org/10.1038/sj.emboj.7600385
- Leupold JH, Yang HS, Colburn NH, et al (2007). Tumor suppressor Pdcd4 inhibits invasion/intravasation and regulates urokinase receptor (u-PAR) gene expression via Sp-transcription factors. Oncogene, 26, 4550-62. https://doi.org/10.1038/sj.onc.1210234
- Li J, Donath S, Li Y, et al (2010). miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet, 6, 1000795. https://doi.org/10.1371/journal.pgen.1000795
- Li T, Cao H, Zhuang J, et al (2010). Identification of miR- 130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin Chim Acta, 412, 66-70.
- Liu G, Huang Y, Lu X, et al (2010). Identification and characteristics of microRNAs with altered expression patterns in a rat model of abdominal aortic aneurysms. Tohoku J Exp Med, 222, 187-93. https://doi.org/10.1620/tjem.222.187
- Lu Z, Liu M, Stribinskis V, et al (2008). MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene, 27, 4373-9. https://doi.org/10.1038/onc.2008.72
- Lund E, Guttinger S, Calado A, et al (2004). Nuclear export of microRNA precursors. Science, 303, 95-8. https://doi.org/10.1126/science.1090599
- Ma L, Teruya-Feldstein J, Weinberg RA (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449, 682-8. https://doi.org/10.1038/nature06174
- Mayr C, Hemann MT, Bartel DP (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science, 315, 1576-9. https://doi.org/10.1126/science.1137999
- Meng F, Henson R, Wehbe-Janek H, et al (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 133, 647-58. https://doi.org/10.1053/j.gastro.2007.05.022
- Mulder JW, Kruyt PM, Sewnath M, et al (1994). Colorectal cancer prognosis and expression of exon-v6-containing CD44 proteins. Lancet, 344, 1470-2. https://doi.org/10.1016/S0140-6736(94)90290-9
- Negrini M, Calin GA (2008). Breast cancer metastasis: a microRNA story. Breast Cancer Res, 10, 203. https://doi.org/10.1186/bcr1856
- Nieves BJ, D'Amore PA, Bryan BA (2009). The function of vascular endothelial growth factor. Biofactors, 35, 332-7. https://doi.org/10.1002/biof.46
- Parkin DM, Bray F, Ferlay J, et al (2005). Global cancer statistics, 2002. CA Cancer J Clin, 55, 74-108. https://doi.org/10.3322/canjclin.55.2.74
- Parkin DM WS, Ferlay J, Teppo L (2002). Cancer incidence in five continents. Volume VIII. IARC Sci Publ, Lyon.
- Perry SV (2001). Vertebrate tropomyosin: distribution, properties and function. J Muscle Res Cell Motil, 22, 5-49. https://doi.org/10.1023/A:1010303732441
- Pyke C, Ralfkiaer E, Huhtala P, et al (1992). Localization of messenger RNA for Mr 72,000 and 92,000 type IV collagenases in human skin cancers by in situ hybridization." Cancer Res, 52, 1336-41.
- Raval GN, Bharadwaj S, Levine EA, et al (2003). Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors. Oncogene, 22, 6194-203. https://doi.org/10.1038/sj.onc.1206719
- Reis PP, Tomenson M, Cervigne NK, et al (2010). Programmed cell death 4 loss increases tumor cell invasion and is regulated by miR-21 in oral squamous cell carcinoma. Mol Cancer, 9, 238. https://doi.org/10.1186/1476-4598-9-238
- Sampson VB, Rong NH, Han J, et al (2007). MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res, 67, 9762-70. https://doi.org/10.1158/0008-5472.CAN-07-2462
- Schmid T, Jansen AP, Baker AR, et al (2008). Translation inhibitor Pdcd4 is targeted for degradation during tumor promotion. Cancer Res, 68, 1254-60. https://doi.org/10.1158/0008-5472.CAN-07-1719
- Schmittgen TD, Jiang J, Liu Q, et al (2004). A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res, 32, 43. https://doi.org/10.1093/nar/gnh040
- Sieuwerts AM, Look MP, Meijer-van Gelder ME, et al (2006). Which cyclin E prevails as prognostic marker for breast cancer? Results from a retrospective study involving 635 lymph node-negative breast cancer patients. Clin Cancer Res, 12, 3319-28. https://doi.org/10.1158/1078-0432.CCR-06-0225
- Smid M, Wang Y, Zhang Y, et al (2008). Subtypes of breast cancer show preferential site of relapse. Cancer Res, 68, 3108-14. https://doi.org/10.1158/0008-5472.CAN-07-5644
- Talvensaari-Mattila A, Paakko P, Hoyhtya M, et al (1998). Matrix metalloproteinase-2 immunoreactive protein: a marker of aggressiveness in breast carcinoma. Cancer, 83, 1153-62. https://doi.org/10.1002/(SICI)1097-0142(19980915)83:6<1153::AID-CNCR14>3.0.CO;2-4
- Tavazoie SF, Alarcon C, Oskarsson T, et al (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451, 147-52. https://doi.org/10.1038/nature06487
- Toi M, Ishigaki S, Tominaga T (1998). Metalloproteinases and tissue inhibitors of metalloproteinases. Breast Cancer Res Treat, 52, 113-24. https://doi.org/10.1023/A:1006167202856
- Turpeenniemi-Hujanen T (2005). Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie, 87, 287-97. https://doi.org/10.1016/j.biochi.2005.01.014
- Valencia-Sanchez MA, Liu J, Hannon GJ, et al (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev, 20, 515-24. https://doi.org/10.1101/gad.1399806
- Vandesompele J, De Preter K, Pattyn F, et al (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 3, 34-?.
- Vigorito E, Perks KL, Abreu-Goodger C, et al (2007). microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity, 27, 847-59. https://doi.org/10.1016/j.immuni.2007.10.009
- Vikhreva PN, Shepelev MV, Korobko EV, et al (2010). Pdcd4 tumor suppressor: properties, functions, and their application to oncology. Mol Gen Mikrobiol Virusol, ?, 3-11 (in Russian).
- Volinia S, Calin GA, Liu CG, et al (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA, 103, 2257-61. https://doi.org/10.1073/pnas.0510565103
- Wang W, Zhao J, Wang H, et al (2010). Programmed cell death 4 (PDCD4) mediates the sensitivity of gastric cancer cells to TRAIL-induced apoptosis by down-regulation of FLIP expression. Exp Cell Res, 316, 2456-64. https://doi.org/10.1016/j.yexcr.2010.05.027
- Wang WQ, Zhang H, Wang HB, et al (2010). Programmed cell death 4 (PDCD4) enhances the sensitivity of gastric cancer cells to TRAIL-induced apoptosis by inhibiting the PI3K/ Akt signaling pathway. Mol Diagn Ther, 14, 155-61. https://doi.org/10.1007/BF03256368
- Wu W, He JT, Ruan JD, et al (2008). Expression of MMP-2, MMP-9 and collagen type IV and their relationship in colorectal carcinomas. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 24, 908-9 (in Chinese).
- Yu K, Lee CH, Tan PH, et al (2004). A molecular signature of the Nottingham prognostic index in breast cancer. Cancer Res, 64, 2962-8. https://doi.org/10.1158/0008-5472.CAN-03-2430
- Zhang W, Dahlberg JE, Tam W (2007). MicroRNAs in tumorigenesis: a primer. Am J Pathol, 171, 728-38. https://doi.org/10.2353/ajpath.2007.070070
- Zhu S, Si ML, Wu H, et al (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem, 282, 14328-36. https://doi.org/10.1074/jbc.M611393200
Cited by
- Differential Distribution of miR-20a and miR-20b may Underly Metastatic Heterogeneity of Breast Cancers vol.13, pp.5, 2012, https://doi.org/10.7314/APJCP.2012.13.5.1901
- Cancer control and prevention vol.16, pp.4, 2013, https://doi.org/10.1097/MCO.0b013e328361dc70
- Expression status of let-7a and miR-335 among breast tumors in patients with and without germ-line BRCA mutations vol.395, pp.1-2, 2014, https://doi.org/10.1007/s11010-014-2113-4
- Upregulation of miR-372 and -373 associates with lymph node metastasis and poor prognosis of oral carcinomas vol.125, pp.11, 2015, https://doi.org/10.1002/lary.25464
- Pilot Study of Serum MicroRNA-21 as a Diagnostic and Prognostic Biomarker in Egyptian Breast Cancer Patients vol.19, pp.3, 2015, https://doi.org/10.1007/s40291-015-0143-6
- MicroRNA-21 Expression in Primary Breast Cancer Tissue Among Egyptian Female Patients and its Correlation with Chromosome 17 Aneusomy vol.19, pp.6, 2015, https://doi.org/10.1007/s40291-015-0161-4
- Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring vol.34, pp.1, 2015, https://doi.org/10.1007/s10555-015-9551-7
- Over-expression of miR-10b in NPC patients: correlation with LMP1 and Twist1 vol.36, pp.5, 2015, https://doi.org/10.1007/s13277-014-3022-6
- The novel role of miRNAs for tamoxifen resistance in human breast cancer vol.72, pp.13, 2015, https://doi.org/10.1007/s00018-015-1887-1
- microRNAs in breast cancer: regulatory roles governing the hallmarks of cancer vol.91, pp.2, 2015, https://doi.org/10.1111/brv.12176
- MiR-126 Regulates the ERK Pathway via Targeting KRAS to Inhibit the Glioma Cell Proliferation and Invasion vol.54, pp.1, 2017, https://doi.org/10.1007/s12035-015-9654-8
- Age-related microRNAs in older breast cancer patients: biomarker potential and evolution during adjuvant chemotherapy vol.18, pp.1, 2018, https://doi.org/10.1186/s12885-018-4920-6
- The role of microRNAs regulating the expression of matrix metalloproteinases (MMPs) in breast cancer development, progression, and metastasis vol.234, pp.5, 2019, https://doi.org/10.1002/jcp.27445