DOI QR코드

DOI QR Code

YY1 and CP2c in Unidirectional Spermatogenesis and Stemness

  • Cheon, Yong-Pil (Division of Developmental Biology and Physiology, Institute for Basic Sciences, Sungshin University) ;
  • Choi, Donchan (Department of Life Science, College of Environmental Sciences, Yong-In University) ;
  • Lee, Sung-Ho (Department of Biotechnology, Sangmyung University) ;
  • Kim, Chul Geun (Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University)
  • Received : 2020.11.14
  • Accepted : 2020.12.29
  • Published : 2020.12.31

Abstract

Spermatogonial stem cells (SSCs) have stemness characteristics, including germ cell-specific imprints that allow them to form gametes. Spermatogenesis involves changes in gene expression such as a transition from expression of somatic to germ cell-specific genes, global repression of gene expression, meiotic sex chromosome inactivation, highly condensed packing of the nucleus with protamines, and morphogenesis. These step-by-step processes finally generate spermatozoa that are fertilization competent. Dynamic epigenetic modifications also confer totipotency to germ cells after fertilization. Primordial germ cells (PGCs) in embryos do not enter meiosis, remain in the proliferative stage, and are referred to as gonocytes, before entering quiescence. Gonocytes develop into SSCs at about 6 days after birth in rodents. Although chromatin structural modification by Polycomb is essential for gene silencing in mammals, and epigenetic changes are critical in spermatogenesis, a comprehensive understanding of transcriptional regulation is lacking. Recently, we evaluated the expression profiles of Yin Yang 1 (YY1) and CP2c in the gonads of E14.5 and 12-week-old mice. YY1 localizes at the nucleus and/or cytoplasm at specific stages of spermatogenesis, possibly by interaction with CP2c and YY1-interacting transcription factor. In the present article, we discuss the possible roles of YY1 and CP2c in spermatogenesis and stemness based on our results and a review of the relevant literature.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program (2014R1A2A1A11054432 and NRF2017M3A9C8027975 to C.G.K., NRF2015M3A9D7067365 to Y.P.C) of the National Research Foundation (NRF), and Korea Health Industry Development Institute (H16C1085 to Y.P.C.) of Korea.

References

  1. Abed JA, Jones RS (2012) H3k36me3 key to polycomb-mediated gene silencing in lineage specification. Nat Struct Mol Biol 19:1214-1215. https://doi.org/10.1038/nsmb.2458
  2. Bajusz I, Henry S, Sutus E, Kovacs G, Pirity MK (2019) Evolving role of RING1 and YY1 binding protein in the regulation of germ-cell-specific transcription. Genes 10:941. https://doi.org/10.3390/genes10110941
  3. Barnhart KM, Kim CG, Banerji SS, Sheffery M (1988) Identification and characterization of multiple erythroid cell proteins that interact with the promoter of the murine α-globin gene. Mol Cell Biol 8:3215-3226.
  4. Barrero MJ, Izpisua Belmonte JC (2013) Polycomb complex recruitment in pluripotent stem cells. Nat Cell Biol 15:348-350. https://doi.org/10.1038/ncb2723
  5. Blackledge NP, Rose NR, Klose RJ (2015) Targeting polycomb systems to regulate gene expression: Modifications to a complex story. Nat Rev Mol Cell Biol 16:643-649. https://doi.org/10.1038/nrm4067
  6. Bolcun-Filas E, Bannister LA, Barash A, Schimenti KJ, Hartford SA, Eppig JJ, Handel MA, Shen L, Schimenti JC (2011) A-MYB (MYBL1) transcription factor is a master regulator of male meiosis. Development 138:3319-3330. https://doi.org/10.1242/dev.067645
  7. Cao L, Alani E, Kleckner N (1990) A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61:1089-1101. https://doi.org/10.1016/0092-8674(90)90072-M
  8. Cavalli G, Paro R (1998) Chromo-domain proteins: Linking chromatin structure to epigenetic regulation. Curr Opin Cell Biol 10:354-360. https://doi.org/10.1016/S0955-0674(98)80011-2
  9. Chae JH, Kim CG (2003) Cp2 binding to the promoter is essential for the enhanced transcription of globin genes in erythroid cells. Mol Cells 15:40-47.
  10. Chen X, Lu C, Morillo Prado JR, Eun SH, Fuller MT (2011) Sequential changes at differentiation gene promoters as they become active in a stem cell lineage. Development 138:2441-2450. https://doi.org/10.1242/dev.056572
  11. Chiacchiera F, Rossi A, Jammula SG, Piunti A, Scelfo A, Ordonez-Moran P, Huelsken J, Koseki H, Pasini D (2016) Polycomb complex PRC1 preserves intestinal stem cell identity by sustaining wnt/β-catenin transcriptional activity. Cell Stem Cell 18:91-103. https://doi.org/10.1016/j.stem.2015.09.019
  12. Chiquoine AD (1954) The identification, origin, and migration of the primordial germ cells in the mouse embryo. Anat Rec 118:135-146. https://doi.org/10.1002/ar.1091180202
  13. Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273-304. https://doi.org/10.1146/annurev.biochem.77.062706.153223
  14. Clevers H (2013) The intestinal crypt, a prototype stem cell compartment. Cell 154:274-284. https://doi.org/10.1016/j.cell.2013.07.004
  15. Connelly KE, Dykhuizen EC (2017) Compositional and functional diversity of canonical PRC1 complexes in mammals. Biochim Biophys Acta Gene Regul Mech 1860:233-245. https://doi.org/10.1016/j.bbagrm.2016.12.006
  16. Corbineau S, Lassalle B, Givelet M, Souissi-Sarahoui I, Firlej V, Romeo PH, Allemand I, Riou L, Fouchet P (2017) Spermatogonial stem cells and progenitors are refractory to reprogramming to pluripotency by the transcription factors Oct3/4, c-Myc, Sox2 and Klf4. Oncotarget 8:10050-10063. https://doi.org/10.18632/oncotarget.14327
  17. Coull JJ, Romerio F, Sun JM, Volker JL, Galvin KM, Davie JR, Shi Y, Hansen U, Margolis DM (2000) The human factors YY1 and lsf repress the human immunodeficiency virus type 1 long terminal repeat via recruitment of histone deacetylase 1. J Virol 74:6790-6799. https://doi.org/10.1128/JVI.74.15.6790-6799.2000
  18. Culty M (2009) Gonocytes, the forgotten cells of the germ cell lineage. Birth Defects Res C Embryo Today 87:1-26. https://doi.org/10.1002/bdrc.20142
  19. de Rooij DG, Grootegoed JA (1998) Spermatogonial stem cells. Curr Opin Cell Biol 10:694-701. https://doi.org/10.1016/S0955-0674(98)80109-9
  20. Deng Z, Cao P, Wan MM, Sui G (2010) Yin Yang 1: A multifaceted protein beyond a transcription factor. Transcription 1:81-84. https://doi.org/10.4161/trns.1.2.12375
  21. Di Croce L, Helin K (2013) Transcriptional regulation by polycomb group proteins. Nat Struct Mol Biol 20:1147-1155. https://doi.org/10.1038/nsmb.2669
  22. Du Z, Zheng H, Kawamura YK, Zhang K, Gassier J, Powell S, Xu Q, Lin Z, Xu K, Zhou Q, Ozonov EA, Veron N, Huang B, Li L,Yu G, Liu L, Yeung WKA, Wang P, Chang L, Wang Q, He A, Sun Y, Na J, Sun Q, Sasaki H, Tachibana K, Peters AHFM, Xie W (2020) Polycomb group proteins regulate chromatin architecture in mouse oocytes and early embryos. Mol Cell 77:825-839. https://doi.org/10.1016/j.molcel.2019.11.011
  23. Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su IH, Hannon G, Tarakhovsky A, Fuchs E (2009) Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136:1122-1135. https://doi.org/10.1016/j.cell.2008.12.043
  24. Gan Q, Schones DE, Ho Eun S, Wei G, Cui K, Zhao K, Chen X (2010) Monovalent and unpoised status of most genes in undifferentiated cell-enriched drosophilatestis. Genome Biol 11:R42. https://doi.org/10.1186/gb-2010-11-4-r42
  25. Garcia TX, Hofmann MC (2013) NOTCH signaling in Sertoli cells regulates gonocyte fate. Cell Cycle 12:2538-2545. https://doi.org/10.4161/cc.25627
  26. Gautam N, Kaur M, Kaur S (2020) Structural assembly of polycomb group protein and insight of EZH2 in cancer progression: a review. J Cancer Res 33063698.
  27. Gil J, O'Loghlen A (2014) PRC1 complex diversity: Where is it taking us? Trends Cell Biol 24:632-641. https://doi.org/10.1016/j.tcb.2014.06.005
  28. He G, Margolis DM (2002) Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (hiv-1) by the hiv-1 repressor YY1 and HIV-1 activator tat. Mol Cell Biol 22:2965-2973. https://doi.org/10.1128/MCB.22.9.2965-2973.2002
  29. He H, Ye A, Perera BPU, Kim J (2017) YY1'S role in the Peg3 imprinted domain. Sci Rep 7:6427. https://doi.org/10.1038/s41598-017-06817-5
  30. He N, Jahchan NS, Hong E, Li Q, Bayfield MA, Maraia RJ, Luo K, Zhou Q (2008) A larelated protein modulates 7SK snRNP integrity to suppress p-tefb-dependent transcriptional elongation and tumorigenesis. Mol Cell 29:588-599. https://doi.org/10.1016/j.molcel.2008.01.003
  31. Hill PWS, Leitch HG, Requena CE, Sun Z, Amouroux R, Roman-Trufero M, Borkowska M, Terragni J, Vaisvila R, Linnett S, Bagci H, Dharmalingham G, Haberle V, Lenhard B, Zheng Y, Pradhan S, Hajkova P (2018) Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte. Nature 555:392-396. https://doi.org/10.1038/nature25964
  32. Infante T, Mancini FP, Lanza A, Soricelli A, de Nigris F, Napoli C (2015) Polycomb YY1 is a critical interface between epigenetic code and miRNA machinery after exposure to hypoxia in malignancy. Biochim Biophys Acta Mol Cell Res 1853:975-986. https://doi.org/10.1016/j.bbamcr.2015.01.009
  33. Kadoch C, Crabtree GR (2015) Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci Adv 1:e1500447. https://doi.org/10.1126/sciadv.1500447
  34. Kang HC, Chae JH, Jeon J, Kim W, Ha DH, Shin JH, Kim CG, Kim CG (2010) PIAS1 regulates CP2c localization and active promoter complex formation in erythroid cell-specific α-globin expression. Nucleic Acids Res 38:5456-5471. https://doi.org/10.1093/nar/gkq286
  35. Kang HC, Chae JH, Lee YH, Park MA, Shin JH, Kim SH, Ye SK, Cho YS, Fiering S, Kim CG (2005) Erythroid cell-specific α-globin gene regulation by the CP2 transcription factor family. Mol Cell Biol 25:6005-6020. https://doi.org/10.1128/MCB.25.14.6005-6020.2005
  36. Kim CG, Barnhart KM, Sheffery M (1988) Purification of multiple erythroid cell proteins that bind the promoter of the alpha-globin gene. Mol Cell Biol 8:4270-4281.
  37. Kim CG, Swendeman SL, Barnhart KM, Sheffery M (1990) Promoter elements and erythroid cell nuclear factors that regulate alpha-globin gene transcription in vitro. Mol Cell Biol 10:5958-5966.
  38. Kim JD, Kang K, Kim J (2009) YY1'S role in DNA methylation of Peg3 and Xist. Nucleic Acids Res 37:5656-5664. https://doi.org/10.1093/nar/gkp613
  39. Kim JD, Kim H, Ekram MB, Yu S, Faulk C, Kim J (2011) Rex1/Zfp42 as an epigenetic regulator for genomic imprinting. Hum Mol Genet 20:1353-1362. https://doi.org/10.1093/hmg/ddr017
  40. Kim JS, Chae JH, Cheon YP, Kim CG (2016) Reciprocal localization of transcription factors YY1 and CP2c in spermatogonial stem cells and their putative roles during spermatogenesis. Acta Histochem 118:685-692. https://doi.org/10.1016/j.acthis.2016.08.005
  41. Kim JS, Son SH, Kim MY, Choi DH, Jang IS, Paik SS, Chae JH, Uversky VN, Kim CG (2017) Diagnostic and prognostic relevance of CP2c and YY1 expression in hepatocellular carcinoma. Oncotarget 8:24389-24400. https://doi.org/10.18632/oncotarget.15462
  42. Kim MY, Kim JS, Son SH, Lim CS, Eum HY, Ha DH, Park MA, Baek EJ, Ryu BY, Kang HC, Uversky VN, Kim CG (2018) Mbd2-CP2c loop drives adult-type globin gene expression and definitive erythropoiesis. Nucleic Acids Res 46:4933-4949. https://doi.org/10.1093/nar/gky193
  43. Klauke K, Radulovic V, Broekhuis M, Weersing E, Zwart E, Olthof S, Ritsema M, Bruggeman S, Wu X, Helin K, Bystrykh L, de Haan G (2013) Polycomb cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nat Cell Biol 15:353-362. https://doi.org/10.1038/ncb2701
  44. Laktionov PP, White-Cooper H, Maksimov DA, Belyakin SN (2014) Transcription factor comr acts as a direct activator in the genetic program controlling spermatogenesis in D. melanogaster. Mol Biol 48:130-140. https://doi.org/10.1134/S0026893314010087
  45. Lee CH, Holder M, Grau D, Saldana-Meyer R, Yu JR, Ganai RA, Zhang J, Wang M, LeRoy G, Dobenecker MW, Reinberg D, Armache KJ (2018) Distinct stimulatory mechanisms regulate the catalytic activity of polycomb repressive complex 2. Mol Cell 70:435-448. https://doi.org/10.1016/j.molcel.2018.03.019
  46. Lee SJ, Choi D, Rhim H, Choo HJ, Ko YG, Kim CG, Kang S (2008) PHB2 interacts with RNF2 and represses CP2c-stimulated transcription. Mol Cell Biochem 319:69-77. https://doi.org/10.1007/s11010-008-9878-2
  47. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono KI, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA (2006) Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125:301-313. https://doi.org/10.1016/j.cell.2006.02.043
  48. Li H, Lai P, Jia J, Song Y, Xia Q, Huang K, He N, Ping W, Chen J, Yang Z, Li J, Yao M, Dong X, Zhao J, Hou C, Esteban MA, Gao S, Pei D, Hutchins AP, Yao H (2017) RNA helicase DDX5 inhibit reprogramming to pluripotency by miRNA-based reproession of RYBP and its PRC1-dependent and -independent funcitons. Cell Stem Cell 20:462-477. https://doi.org/10.1016/j.stem.2016.12.002
  49. Maezawa S, Hasegawa K, Yukawa M, Sakashita A, Alavattam KG, Andereassen PR, Vidal M, Koseki H, Barski A, Namekawa SH (2017) Polycomb directs timely activation of germline genes in spermatogenesis. Genes Dev 31:1693-1703. https://doi.org/10.1101/gad.302000.117
  50. Margueron R, Reinberg D (2011) The polycomb complex PRC2 and its mark in life. Nature 469:343-349. https://doi.org/10.1038/nature09784
  51. Mu W, Starmer J, Fedoriw AM, Yee D, Magnuson T (2014) Repression of the soma-specific transcriptome by polycomb-repressive complex 2 promotes male germ cell development. Genes Dev 28:2056-2069. https://doi.org/10.1101/gad.246124.114
  52. Murata T, Nitta M, Yasuda K (1998) Transcription factor CP2 is essential for lens-specific expression of the chicken α-crystallin gene. Genes Cells 3:443-457. https://doi.org/10.1046/j.1365-2443.1998.00204.x
  53. Nakagawa T, Sharma M, Nabeshima YI, Braun RE, Yoshida S (2010) Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science 328:62-67. https://doi.org/10.1126/science.1182868
  54. Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt KM, Cahan P, Mancarci BO, Unternaehrer J, Gupta PB, Lander ES, Armstrong SA, Daley GQ (2012) Chromatin-modifying enzymes as modulators of reprogramming. Nature 483:598-602. https://doi.org/10.1038/nature10953
  55. Orlando V (2003) Polycomb, epigenomes, and control of cell identity. Cell 112:599-606. https://doi.org/10.1016/S0092-8674(03)00157-0
  56. Pan X, Jones M, Jiang J, Zaprazna K, Yu D, Pear W, Maillard I, Atchison ML (2012) Increased expression of PcG protein YY1 negatively regulates b cell development while allowing accumulation of myeloid cells and LT-HSC cells. PLoS One 7:e30656. https://doi.org/10.1371/journal.pone.0030656
  57. Panigrahi SK, Vasileva A, Wolgemuth DJ (2012) Sp1 transcription factor and GATA1 cis-acting elements modulate testis-specific expression of mouse cyclin A1. PLoS One 7:e47862. https://doi.org/10.1371/journal.pone.0047862
  58. Perekatt AO, Valdez MJ, Davila M, Hoffman A, Bonder EM, Gao N, Verzi MP (2014) YY1 is indispensable for Lgr5+ intestinal stem cell renewal. Proc Natl Acad Sci USA 111:7695-7700. https://doi.org/10.1073/pnas.1400128111
  59. Santhekadur PK, Rajasekaran D, Siddiq A, Gredler R, Chen D, Schaus SE, Hansen U, Fisher PB, Sarkar D (2012) The transcription factor LSF: A novel oncogene for hepatocellular carcinoma. Am J Cancer Res 2:269-285.
  60. Sasaki H, Matsui Y (2008) Epigenetic events in mammalian germ-cell development: Reprogramming and beyond. Nat Rev Genet 9:129-140. https://doi.org/10.1038/nrg2295
  61. Satijn DPE, Hamer KM, den Blaauwen J, Otte AP (2001) The polycomb group protein EED interacts with YY1, and both proteins induce neural tissue in Xenopus embryos. Mol Cell Biol 21:1360-1369. https://doi.org/10.1128/MCB.21.4.1360-1369.2001
  62. Schoenfelder S, Sugar R, Dimond A, Javierre BM, Armstrong H, Mifsud B, Dimitrova E, Matheson L, Tavares-Cadete F, Furlan-Magaril M, Segonds-Pichon A, Jurkowski W, Wingett SW, Tabbada K, Andrews S, Herman B, LeProust E, Osborne CS, Koseki H, Fraser P, Luscombe NM, Elderkin S (2015) Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat Genet 47:1179-1186. https://doi.org/10.1038/ng.3393
  63. Seydoux G, Braun RE (2006) Pathway to totipotency: Lessons from germ cells. Cell 127:891-904. https://doi.org/10.1016/j.cell.2006.11.016
  64. Simon JA, Kingston RE (2009) Mechanisms of polycomb gene silencing: Knowns and unknowns. Nat Rev Mol Cell Biol 10:697-708. https://doi.org/10.1038/nrm2763
  65. Simon JA, Kingston RE (2013) Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 49:808-824. https://doi.org/10.1016/j.molcel.2013.02.013
  66. Surface LE, Thornton SR, Boyer LA (2010) Polycomb group proteins set the stage for early lineage commitment. Cell Stem Cell 7:288-298. https://doi.org/10.1016/j.stem.2010.08.004
  67. Ueda T, Abe K, Miura A, Yuzuriha M, Zubair M, Noguchi M, Niwa K, Kawase Y, Kono T, Matsuda Y, Fujimoto H, Shibata H, Hayashizaki Y, Sasaki H (2000) The paternal methylation imprint of the mouse H19 locus is acquired in the gonocyte stage during foetal testis development. Genes Cells 5:649-659. https://doi.org/10.1046/j.1365-2443.2000.00351.x
  68. Veljkovic J, Hansen U (2004) Lineage-specific and ubiquitous biological roles of the mammalian transcription factor LSF. Gene 343:23-40. https://doi.org/10.1016/j.gene.2004.08.010
  69. Vella P, Barozzi I, Cuomo A, Bonaldi T, Pasini D (2012) Yin Yang 1 extends the myc-related transcription factors network in embryonic stem cells. Nucleic Acids Res 40:3403-3418. https://doi.org/10.1093/nar/gkr1290
  70. Wang GZ, Goff SP (2015) Regulation of Yin Yang 1 by tyrosine phosphorylation. J Biol Chem 290:21890-21900. https://doi.org/10.1074/jbc.M115.660621
  71. Wang J, Tang C, Wang Q, Su J, Ni T, Yang W, Wang Y, Chen W, Liu X, Wang S, Zhang J, Song H, Zhu J, Wang Y (2017) NRF1 coordinates with DNA methylation to regulate spermatogenesis. FASEB J 31:4959-4970. https://doi.org/10.1096/fj.201700093R
  72. Wei C, Lin H, Cui S (2018) The forkhead transcription factor FOXC2 is required for maintaining murine spermatogonial stem cells. Stem Cells Dev 27:624-636. https://doi.org/10.1089/scd.2017.0233
  73. Williamson I, Bickmore WA, Illingworth RS (2016) Polycomb-mediated chromatin compaction weathers the STORM. Genome Biol 17:35. https://doi.org/10.1186/s13059-016-0899-y
  74. Wu S, Hu YC, Liu H, Shi Y (2009) Loss of yy1 impacts the heterochromatic state and meiotic double-strand breaks during mouse spermatogenesis. Mol Cell Biol 29:6245-6256. https://doi.org/10.1128/MCB.00679-09
  75. Wu X, Oatley JM, Oatley MJ, Kaucher AV, Avarbock MR, Brinster RL (2010) The pou domain transcription factor POU3F1 is an important intrinsic regulator of GDNF-induced survival and self-renewal of mouse spermatogonial stem cells. Biol Reprod 82:1103-1111. https://doi.org/10.1095/biolreprod.109.083097
  76. Yokobayashi S, Liang CY, Kohler H, Nestorov P, Liu Z, Vidal M, van Lohuizen M, Roloff TC, Peters AHFM (2013) PRC1 coordinates timing of sexual differentiation of female primordial germ cells. Nature 495:236-240. https://doi.org/10.1038/nature11918
  77. Zhang T, Oatley J, Bardwell VJ, Zarkower D (2016) DMRT1 is required for mouse spermatogonial stem cell maintenance and replenishment. PLoS Genet 12:e1006293. https://doi.org/10.1371/journal.pgen.1006293