• Title/Summary/Keyword: Gene characterization

Search Result 2,030, Processing Time 0.049 seconds

Characterization of Filamentous Cyanobacteria Encapsulated in Alginate Microcapsules (알긴산염 마이크로캡슐 내부에 동결보존된 사상체 남세균의 특성 연구)

  • Park, Mirye;Kim, Z-Hun;Nam, Seung Won;Lee, Sang Deuk;Yun, Suk Min;Kwon, Dae Ryul;Lee, Chang Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.205-214
    • /
    • 2020
  • Cyanobacteria are microorganisms which have important roles in the nitrogen cycle due to their ability to fix nitrogen in water and soil ecosystems. They also produce valuable materials that may be used in various industries. However, some species of cyanobacteria may limit the use of water resources by causing harmful algal blooms in water ecosystems. Many culture collection depositories provide cyanobacterial strains for research, but their systematic preservation is not well-developed in Korea. In this study, we developed a method for the cryopreservation of the cyanobacteria Trichormus variabilis (syn. Anabaena variabilis), using alginate microcapsules. Two approaches were used for the experiments and their outputs were compared. One of the methods involved the cryopreservation of cells using only a cryoprotectant and the other used the cryoprotectant within microcapsules. After cryopreservation for 35 days, cells preserved with both methods were successfully regenerated from the initial 1.0 × 105 cells/ml to a final concentration of 6.7 × 106 cells/ml and 1.1 × 107 cells/ml. Irregular T. variabilis shapes were found after 14 days of regeneration. T. variabilis internal structures were observed by transmission electron microscopy (TEM), revealing that lipid droplets were reduced after cryopreservation. The expression of the mreB gene, known to be related to cell morphology, was downregulated (54.7%) after cryopreservation. Cryopreservation using cryoprotectant alone or with microcapsules is expected to be applicable to other filamentous cyanobacteria in the future.

Characterization of Streptomyces netropsis Showing a Nematicidal Activity against Meloidogyne incognita (Meloidogyne incognita에 살선충활성을 보이는 신규 Streptomyces netropsis의 살선충 특성 규명)

  • Jang, Ja Yeong;Choi, Yong Ho;Joo, Yoon-Jung;Kim, Hun;Choi, Gyung Ja;Jang, Kyoung Soo;Kim, Chang-Jin;Cha, Byeongjin;Park, Hae Woong;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.21 no.2
    • /
    • pp.50-57
    • /
    • 2015
  • Control of nematode has become difficult owing to the restricted use of effective soil fumigant, methyl bromide, and other non-fumigant nematicides. Therefore, it is urgently necessary to develop microbial nematicide to replace chemical nematicides. In this study, the 50% aqueous methanol extraction solution of fermentation broths of 2,700 actinomycete strains were tested for their nematicidal activity against second stage of juveniles (J2s) of Meloidogyne incognita. As the results, only the 50% aqueous methanol extraction solution of AN110065, at 20% equivalent to 10% fermentation broth, showed strong nematicidal activity with 78.9% of mortality 24 h after treatment and 94.1% of mortality at 72 h. The 16S rRNA gene sequencing showed that the strain sequence was 99.78% identical to Streptomyces netropsis. The extract of S. netropsis AN110065 fermentation broth was successively partitioned with ethyl acetate and butanol and then the ethyl acetate, butanol and water layers were investigated for their nematicidal activity against the M. incognita. At $1000{\mu}g/ml$, ethyl acetate layer showed the strongest activity of 83.5% of juvenile mortality 72 h after treatment. The pot experiment using the fermentation broth of AN110065 on tomato plant against M. incognita displayed that it evidently suppressed gall formation at a 10-fold diluent treatment. The tomato plants treated with the fermentation broth of S. netropsis AN110065 did not show any phytotoxicity. The results suggest that S. netropsis AN110065 has a potential to serve as microbial nematicide in organic agriculture.

Identification and Characterization of Three Isolates of Cucumber mosaic virus Isolated from Weed Hosts (잡초에서 분리한 3종 Cucumber mosaic virus의 동정과 특성)

  • Lee, Hyeok-Geun;Kim, Sung-Ryul;Jeon, Yong-Woon;Kwon, Soon-Bae;Ryu, Ki-Hyun;Choi, Jang-Kyung
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.15-20
    • /
    • 2008
  • Three isolates of Cucumber mosaic virus (CMV) were isolated from weed hosts showing typical mosaic symptoms, and some properties of the viruses were investigated. CMV isolates, designated as Is-CMV, Jd-CMV and Pla-CMV from Isodon inflexus, Jeffersonia dubia and Phryma leptostachya var. asiatica, respectively, were identified and characterized by biological reaction in several host plants, serological property, dsRNA analysis, reverse transcription-polymerase chain reaction (RT-PCR), restriction fragment-length polymorphism (RFLP). All isolates systemically infected in Nicotiana benthamiana, Cucurbita pepo cv. Black beauty and Cucumis sativus, and did not reveal any differences in these host plants between the isolates. However, remarkable difference in the symptoms was found between the CMVs in Capsicum annuum. Is-CMV induced an asymptomatic symptoms, while Jd-CMV and Pla-CMV produced severe mosaic symptoms in C. annuum plants. In dsRNA analysis, all isolates revealed four major bands with estimated molecular size of 3.4, 3.2, 2.1 and 1.0 kbp. The cDNAs of coat protein gene of the isolates were amplified by RT-PCR using a genus-specific single pair primers that designed to amplify a DNA fragment of approximately ranging from 938 to 966 bp. By restriction mapping analysis using RFLP of the RT-PCR products as well as by serological properties of gel diffusion test, the CMV isolates belong to a typical members of CMV subgroup IA. This is the first report on the occurrence of CMV in the three weed hosts.

Molecular Characterization and Toxin Profile of Bacillus cereus Strains Isolated from Ready-to-eat Foods (유통 중인 즉석·편의식품류에서 분리한 Bacillus cereus의 산생 Toxin 및 분자유전학적 특성 조사)

  • Kim, Tae Sun;Kim, Min Ji;Kang, Yu Mi;Oh, Geune;Choi, Su Yeon;Oh, Mu Sul;Yang, Yong Shik;Seo, Jung-Mi;Ryu, Mi-Geum;Kim, Eun-Sun;Ha, Dong-Ryong;Cho, Bae Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.334-340
    • /
    • 2014
  • Toxin-producing Bacillus cereus is the causative agent of two different types of food poisoning: the emetic and the diarrheal types. This study was conducted to investigate the presence of enterotoxin and emetic toxin genes in 263 B. cereus isolated from 619 different ready-to-eat food items. Hemolytic enterotoxins hblA, hblC, and hblD were detected in 85.6, 41.1, and 76.8%, respectively, of the B. cereus isolates. About 67.0% (175/263) of the isolates presented all of three genes. Non-hemolytic enterotoxins nheA, nheB, and nheC were detected in 100, 97.0, and 68.4% of the isolates, respectively. Approximately 90.0% (236/263) of the isolates presented all of these three non-hemolytic enterotoxin genes. Emetic toxin gene, CER, was detected in 132 of 263 (50.2%) isolates. Computer-assisted cluster analysis of Rep-PCR profiles showed a high genetic diversity among the isolates. All B. cereus isolates from food samples tested in this study carried at least 6 of 10 toxin genes.

Isolation and Characterization of a Marine Bacterium, Pseudomonas sp. YJ-1 with Anti-Methicillin Resistant Staphylococcus aureus Activity (항 Methicillin Resistant Staphylococcus aureus 활성을 가지는 해양미생물 Pseudomonas sp. YJ-1의 분리와 특성)

  • Woo, Ye-Ju;Jeong, Seong-Yun
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.694-705
    • /
    • 2017
  • The aim of this study was to isolate and identify marine bacterium with anti-methicillin-resistant Staphylococcus aureus (MRSA) activity, and to purify the anti-MRSA compound, as well as to determine its activity and synergistic effects. Among the marine bacteria isolated in this study, the YJ-1 isolate had the strongest anti-MRSA activity. The YJ-1 isolate was identified on the basis of its biochemical characteristics and an analysis of 16S rRNA gene sequences. The YJ-1 isolate showed over 99.2% homology with Pseudomonas stutzeri, and was designated as a Pseudomonas sp. YJ-1. The optimal culture conditions were $25^{\circ}C$ and initial pH 7.0. For the purification of the anti-MRSA compounds, the YJ-1 was cultured in Pa PES-II medium, and the culture filtrates were extracted by ethyl acetate, hexane, and 80% MeOH. The 80% MeOH fraction was separated by a $C_{18}$ ODS column, silica gel chromatography and a reverse phase HPLC, to yield three anti-MRSA agents, the MR1, MR2, and MR3 compounds. When the MR1 compound of $250{\mu}g\;mL^{-1}$ concentration was applied to the MRSA cells, over 95% of bacterial cells was killed within 48 hr. Compared with vancomycin and ampicillin, the MR1 compound showed significant anti-MRSA activity. In addition, the anti-MRSA activity was increased by dose and time dependent manners. Furthermore, the combination of an MR1 compound with vancomycin produced a more rapid decrease in the MRSA cells than did the MR1 compound alone. Taken together, our results suggest that the Pseudomonas sp. YJ-1 and its anti-MRSA compounds could be employed as a natural antibacterial agent in MRSA infections.

Effect of antioxidation and antibacterial activity on crude extract and Characterization of American Cockroaches (Periplaneta americana L.) in Korea (국내 서식 미국바퀴(Periplaneta americana L.)의 특성 및 추출물의 항산화·항균 효과)

  • Kim, Jung-Eun;Kim, Seon-Gon;Kang, Sung-Ju;Kim, Chun-Sung;Choi, Yong-Soo
    • Journal of Sericultural and Entomological Science
    • /
    • v.53 no.2
    • /
    • pp.135-142
    • /
    • 2015
  • The American cockroaches, Periplaneta americana L. was the most important worldwide pest species. It has been an public health problems. We were determinated life cycle and extraction of crude extracts by chemical reagents from cockraches (P. americana L.). The extracted crude solution has been antibacterial activity to gram negative bacteria (Pseudomonas aeruginosa, $6.44{\pm}1.03mm$), gram positive bacteria (Bacillus subtilis, $1.88{\pm}0.40mm$), and fungus (Candida albicans, $5.61{\pm}0.57mm$) using radial diffusion assay. We were analysed of up-regulation of Glutathione-S-transferases (GSTs) stimulation, indicating that antioxidantial protein from various classes are simultaneously expressed in a single insect upon infection or injury. The gene from Periplaneta americana L. were cloned, analysed sequence, and measured protein expression by Real Time PCR (Polymerase Chain Reaction).

Development and Characterization of Rice Lines with Clustered Spikelets and Dense Panicles (군집소수를 가진 고착립밀도 이삭형 벼 개발 및 특성 분석)

  • Park, Hyun-Su;Baek, Man-Kee;Kim, Choon-Song;Lee, Gun-Mi;Park, Seul-Gi;Lee, Chang-Min;Suh, Jung-Pil;Cho, Young-Chan
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.415-423
    • /
    • 2018
  • Rice panicle architecture is an important factor affecting yield potential. Korean rice cultivars have a narrow genetic background for panicle architecture. To enhance the yield potential of Korean rice cultivars, we developed and characterized rice lines with new panicle architecture. Rice with improved panicle architecture has clustered spikelets and dense panicles (CD type). CD rice was derived from a cross between "Binhae Col.#1" carrying dense panicles, and "ARC10319" that has the clustered spikelets gene (Cl). CD rice lines had short and semi-erect panicles with two to five high density spikelets clustered at the tips of primary and secondary rachis branches. CD rice lines had dramatically increased numbers of spikelets; almost twice as many as those of Korean rice cultivars. The increase in spikelet number was mainly caused by the increased spikelets and branches on secondary rachises compared to those on primary rachises. The increase in spikelet number was expected to enhance the yield of CD rice by expanding sink capacity. However, the yield of selected lines; CD9, CD27, CD34, and CD39, did not reach the level of the Korean high-yielding cultivars "Boramchan" and "Hanareum2," due to the reduction in panicle number and grain weight, and poor ripening. Although no substantial yield increase was observed in CD rice, the panicle architecture of CD rice, clustered spikelets, and dense panicles could be new genetic resources as breeding material for diversifying panicle architecture and enhancing yield potential.

Isolation and characterization of cellulolytic yeast belonging to Moesziomyces sp. from the gut of Grasshopper (메뚜기의 내장에서 분리한 Moesziomyces 속에 속하는 셀룰로오스 분해 효모의 분리 및 특성)

  • Kim, Ju-Young;Jung, Hee-Young;Park, Jong-Seok;Cho, Sung-Jin;Lee, Hoon Bok;Sung, Gi-Ho;Subramani, Gayathri;Kim, Myung Kyum
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.234-241
    • /
    • 2019
  • An intensive interaction between yeasts and insects has highlighted their relevance for attraction to food and for the insect's development and behavior. Yeast associated in the gut of insects secretes cellulase which aided in the food digestion (cellulose degradation). Three strains of cellulose-degrading yeast were isolated from the gut of adult grasshoppers collected in Gyeonggi Province, South Korea. The strains $ON22^T$, $G10^T$, and $G15^T$, showed positive cellulolytic activity in the carboxymethyl cellulose (CMC)-plate assay. The phylogenetic tree based on sequence analysis of D1/D2 domains of the large subunit rRNA gene and the internal transcribed spacer (ITS) regions revealed that the strains $ON22^T$ (100 and 98.4% sequence similarities in D1/D2 domains and ITS) and $G10^T$ (99.8 and 99.5% in D1/D2 domain and ITS region) were most closely related to the species Moesziomyces aphidis JCM $10318^T$; $G15^T$ (100% in D1/D2 domains and ITS) belongs to the species Moesziomyces antarcticus JCM $10317^T$, respectively. Morphology and biochemical test results are provided in the species description. Cellulase with its massive applicability has been used in various industrial processes such as biofuels like bioethanol productions. Therefore, this is the first report of the cellulolytic yeast strains $ON22^T$, $G10^T$, and $G15^T$ related to the genus Moesziomyces in the family Ustilaginaceae (Ustilaginales), in Korea.

Characterization of Agarase from a Marine Bacterium Agarivorans sp. BK-1 (해양세균 Agarivorans sp. BK-1의 분리 및 β-아가라제의 특성 규명)

  • Ahn, Byeong-Ki;Min, Kyung-Cheol;Lee, Dong-Geun;Kim, Andre;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1173-1178
    • /
    • 2019
  • The purpose of this study was to isolate an agar-degrading marine bacterium and characterize its agarase. Bacterium BK-1, from Gwanganri Beach at Busan, Korea, was isolated on Marine 2216 agar medium and identified as Agarivorans sp. BK-1 by 16S rRNA gene sequencing. The extracellular agarase, characterized after dialysis of culture broth, showed maximum activity at pH 6.0 and $50^{\circ}C$ in 20 mM Tris-HCl buffer. Relative activities at 20, 30, 40, 50, 60, and $70^{\circ}C$ were 67, 93, 97, 100, 58, and 52%, respectively. Relative activities at pH 5, 6, 7, and 8 were 59, 100, 95, and 91%, respectively. More than 90% of the activity remained after a 2 hr exposure to 20, 30, or $40^{\circ}C$; about 60% of the activity remained after a 2 hr exposure to $50^{\circ}C$. Almost all activity was lost after exposure to 60 or $70^{\circ}C$ for 30 min. Zymography revealed three agarases with molecular weights of 110, 90, and 55 kDa. Agarose was degraded to neoagarobiose (46.8%), neoagarotetraose (39.7%), and neoagarohexaose (13.5%), confirming the agarase of Agarivorans sp. BK-1 as a ${\beta}$-agarase. The neoagarooligosaccharides generated by this agarase could be used for moisturizing, bacterial growth inhibition, skin whitening, food treatments, cosmetics, and delaying starch degradation.

Isolation and Characterization of the Indigenous Microalgae Chlamydomonas reinhardtii K01 as a Potential Resource for Lipid Production and Genetic Modification (지질생산 및 유전자 조작의 잠재적 자원으로서의 토착 미세조류 Chlamydomonas reinhardtii K01의 분리 및 특성)

  • Kim, Eun-Kyung;Cho, Dae Hyun;Suh, Sang-Ik;Lee, Chang-Jun;Kim, Hee-Sik;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.202-209
    • /
    • 2022
  • The green alga Chlamydomonas reinhardtii, a unicellular haploid eukaryote, has long been used by researchers and industries as a cell factory to produce high value-added microalgae substances using genetic modification. Microalga K01, presumed to be Chlamydomonas, was isolated from 12 freshwater samples from the Chungcheong and Jeolla regions to replace C. reinhardtii, an introduced species currently used in most basic and industrial research. The isolated K01 strain was identified as C. reinhardtii through morphological and phylogenetic studies of the 18S rDNA gene sequence (NCBI accession number KC166137). The growth and lipid content of the isolated C. reinhardtii K01 were compared with three wild and four mutant strains in TAP medium, and it was found that the K01 strain could produce 1.74×107 cells/ml by the third day of culture. The growth rate of C. reinhardtii K01 was 1.5 times faster than UTEX2244, which showed the highest number of cells (1.20×107 cells/ml) among the compared strains. The lipid content of the isolated C. reinhardtii K01 (20.67%) was similar to those of the wild strains, although the fatty acid oleate C18:1 was not detected in the isolated strain but was identified in the seven others. The cell density of the isolated strain increased to 0.87 g/l during a six-day culture in BG11 medium, where nitrate (NaNO3) was introduced as a nitrogen source, while the seven acquired strains showed almost no cell proliferation.