DOI QR코드

DOI QR Code

Development and Characterization of Rice Lines with Clustered Spikelets and Dense Panicles

군집소수를 가진 고착립밀도 이삭형 벼 개발 및 특성 분석

  • 박현수 (농총진흥청 국립식량과학원) ;
  • 백만기 (농총진흥청 국립식량과학원) ;
  • 김춘송 (농총진흥청 국립식량과학원) ;
  • 이건미 (농총진흥청 국립식량과학원) ;
  • 박슬기 (농총진흥청 국립식량과학원) ;
  • 이창민 (농총진흥청 국립식량과학원) ;
  • 서정필 (농총진흥청 국립식량과학원) ;
  • 조영찬 (농총진흥청 국립식량과학원)
  • Received : 2018.10.01
  • Accepted : 2018.10.24
  • Published : 2018.12.01

Abstract

Rice panicle architecture is an important factor affecting yield potential. Korean rice cultivars have a narrow genetic background for panicle architecture. To enhance the yield potential of Korean rice cultivars, we developed and characterized rice lines with new panicle architecture. Rice with improved panicle architecture has clustered spikelets and dense panicles (CD type). CD rice was derived from a cross between "Binhae Col.#1" carrying dense panicles, and "ARC10319" that has the clustered spikelets gene (Cl). CD rice lines had short and semi-erect panicles with two to five high density spikelets clustered at the tips of primary and secondary rachis branches. CD rice lines had dramatically increased numbers of spikelets; almost twice as many as those of Korean rice cultivars. The increase in spikelet number was mainly caused by the increased spikelets and branches on secondary rachises compared to those on primary rachises. The increase in spikelet number was expected to enhance the yield of CD rice by expanding sink capacity. However, the yield of selected lines; CD9, CD27, CD34, and CD39, did not reach the level of the Korean high-yielding cultivars "Boramchan" and "Hanareum2," due to the reduction in panicle number and grain weight, and poor ripening. Although no substantial yield increase was observed in CD rice, the panicle architecture of CD rice, clustered spikelets, and dense panicles could be new genetic resources as breeding material for diversifying panicle architecture and enhancing yield potential.

벼의 이삭형태는 잠재 수량성에 중요한 역할을 한다. 우리나라 육성 벼 품종의 이삭형태는 협소한 유전적 배경을 가지고 있다. 본 연구는 우리나라 벼 품종의 수량성 향상을 위해 이삭형태가 다른 유전자원을 이용하여 수당립수가 증대된 새로운 이삭형태의 벼를 개발하고 수량 관련 형질 특성을 분석하여 다수성 벼 육종사업에 반영하고자 수행되었다. 새로운 이삭형태의 벼는 군집소수를 가지고 있는 고착립밀도 이삭형 벼(이하 CD형)로 고착립밀도 이삭을 가지고 있는 빈해수집1과 군집소수 유전자를 가지고 있는 ARC10319를 교배모본으로 이용하여 개발되었다. CD형 벼는 반직립의 짧은 이삭에 1차 지경 및 2차 지경 선단에 소수가 2-5개씩 군집되어 착생되어 착립밀도가 매우 높고 수당립수가 획기적으로 증가한 이삭을 가지고 있다. CD형 벼의 수당립수는 우리나라 육성 벼 품종에 비해 거의 2배 이상 많았다. CD형 벼의 수당립수 증가는 1차 지경 및 착생립의 증가보다 2차 지경 및 착생립의 증가에 기인하였다. CD형 벼의 수당립수 증가는 sink의 증대를 통한 수량성 향상을 기대케 하였다. 하지만 선발된 우량계통 CD9, CD27, CD34, CD39의 수량성은 상대적으로 적은 수수, 가벼운 천립중, 낮은 등숙률로 인하여 국내 초다수성품종인 보람찬과 한아름2호에 못미치는 수준을 나타냈다. 개발된 CD형 벼는 실질적인 수량성 향상이라는 육종적 목표는 달성하지 못하였으나 우리나라 육성 품종에는 존재하지 않는 수당립수가 획기적으로 증가한 극단적 이삭 형질 변이를 나타내는 새로운 자원이다. CD형 벼는 협소한 유전적 배경을 가지고 있는 우리나라 벼 품종의 이삭 형질 다양화와 수량성 향상을 위한 육종소재로 활용될 수 있을 것이다.

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. Chung GS, Heu MH. 1980. Status of japonica-indica hybridization in Korea. pp. 135-152. In Argosino G, Durvasula VS, Smith WH (Eds.), Innovative approaches to rice breeding. International Rice Research Institute, Manila, Philippines.
  2. Futsuhara Y, Kondo S, Kitano H, Mii M. 1979. Genetical studies on dense and lax panicles in rice: I. Character expression and mode of lax panicle rice. Jpn J Beed 29: 151-158. https://doi.org/10.1270/jsbbs1951.29.151
  3. Hirota O, Oka M, Takeda T. 1990. Sink activity estimation by sink size and dry matter increase during the ripening stage of barley (Hordeum vulgare) and rice (Oryza sativa). Ann Bot 65: 349-353. https://doi.org/10.1093/oxfordjournals.aob.a087944
  4. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X. 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genet 41: 494. https://doi.org/10.1038/ng.352
  5. Khush GS. 1999. Green revolution: preparing for the 21st century. Genome. 42: 646-655. https://doi.org/10.1139/g99-044
  6. Kinoshita T, Takahashi M. 1991. The one hundredth report of genetical studies on rice plant: Linkage studies and future prospects. J Fac Agric Hokkaido Univ 65: 1-61.
  7. Li Z, Pinson SR, Stansel JW, Paterson AH. 1998. Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Mol Breed 4: 419-426. https://doi.org/10.1023/A:1009608128785
  8. Murai M. 1994. Effects of major genes controlling morphology of panicle in rice. Jpn J Breed 44: 247-255. https://doi.org/10.1270/jsbbs1951.44.247
  9. Nagao S, Takahashi M, Kinoshita T. 1958. Genetical studies on rice plant, XXIII: Inheritance on a certain ear type in rice. Mem Fac Agri Hokkaido Univ 3: 38-47.
  10. Nagao S, Takahashi M. 1963. Trial construction of twelve linkage groups in Japanese Rice: Genetical studies on rice plant, XXVII. J Fac Agri Hokkaido Univ 53: 72-130.
  11. Park HS, Kim KY, Mo YJ, Choung JI, Kang HJ, Kim BK, Shin MS, Ko JK, Kim SH, Lee BY. 2010. Characterization of panicle traits for 178 rice varieties bred in Korea. Korean J Breed Sci 42: 169-180.
  12. Park HS, Kim KY, Mo YJ, Choi IB, Baek MK, Ha KY, Ha WG, Kang HJ, Shin MS, Ko JK. 2011. Characteristics and variation of panicle traits of Korean rice varieties in wet season of the Philippines. Kor J Breed Sci 43: 68-80.
  13. Park HS, Ha KY, Kim KY, Kim WJ, Nam JK, Baek MK, Kim JJ, Jeong JM, Cho YC, Lee JH, Kim BK, Ahn SN. 2015. Development of high-yielding rice lines and analysis of panicle and yield-related traits using doubled haploid lines derived from the cross between Deuraechan and Boramchan, high-yielding japonica rice cultivars in Korea. Korean J Breed Sci 47: 384-402. https://doi.org/10.9787/KJBS.2015.47.4.384
  14. Peng S, Khush GS, Virk P, Tang Q, Zou Y. 2008. Progress in ideotype breeding to increase rice yield potential. Field Crop Res 108: 32-38. https://doi.org/10.1016/j.fcr.2008.04.001
  15. Taguchi-Shiobara F, Kawagoe Y, Kato H, Onodera H, Tagiri A, Hara N, Miyao A, Hirochika H, Kitano H, Yano M. 2011. A loss-of-function mutation of rice DENSE PANICLE 1 causes semi-dwarfness and slightly increased number of spikelets. Breed Sci 61: 17-25. https://doi.org/10.1270/jsbbs.61.17
  16. Tian C, Zhang T, Jiang KF, Yang QH, Wan XQ, Zheng, JK. 2010. Genetic analysis and preliminary gene mapping of rice clustered spikelet mutant. Mol Plant Breed 8: 29-34.
  17. Venkateswarlu B, Visperas RM. 1987. Source-sink relationships in crop plants. pp. 1-19. In Venkateswarlu B, Visperas RM (Eds), IRRI Research Paper Series. International Rice Research Institute, Manila, Philippines.
  18. Wang SS, Chen RK, Chen KY, Liu CY, Kao SM, Chung CL. 2017. Genetic mapping of the qSBN7 locus, a QTL controlling secondary branch number per panicle in rice. Breed Sci 67: 340-347. https://doi.org/10.1270/jsbbs.17007
  19. Wang YD, Kuroda E, Hirano M, Murata T. 1997. Analysis of high yielding mechanism of rice varieties belonging to different plant types: I. Comparison of growth and yield characteristics and dry matter production. Jpn J Crop Sci 66: 293-299. https://doi.org/10.1626/jcs.66.293
  20. Xing Y, Tan Y, Hua J, Sun X, Xu C, Zhang Q. 2002. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105: 248-257. https://doi.org/10.1007/s00122-002-0952-y
  21. Xu H, Zhao M, Zhang Q, Xu Z, Xu Q. 2016. The DENSE AND ERECT PANICLE 1 (DEP1) gene offering the potential in the breeding of high-yielding rice. Breed Sci 66: 659-667. https://doi.org/10.1270/jsbbs.16120
  22. Xu Q, Xu N, Xu H, Tang L, Liu J, Sun J, Wang J. 2014. Breeding value estimation of the application of IPA1 and DEP1 to improvement of Oryza sativa L. ssp. japonica in early hybrid generations. Mol Breed 34: 1933-1942. https://doi.org/10.1007/s11032-014-0150-z
  23. Yuan L. 1998. Hybrid rice breeding for super high yield. Hybrid Rice 12:1-6.
  24. Zheng L, Zhu X, Qian Q, Zhao Z, Zhang J, Hu X, Lin H, Luo D. 2003. Morphology and mapping analysis of rice (Oryza sativa L.) clustered spikelets (Cl) mutant. Chin Sci Bull 48: 559-562. https://doi.org/10.1360/03tb9119