DOI QR코드

DOI QR Code

Isolation and characterization of cellulolytic yeast belonging to Moesziomyces sp. from the gut of Grasshopper

메뚜기의 내장에서 분리한 Moesziomyces 속에 속하는 셀룰로오스 분해 효모의 분리 및 특성

  • Kim, Ju-Young (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Jung, Hee-Young (College of Agricultural and Life Sciences, Kyungpook National University) ;
  • Park, Jong-Seok (School of Biological Sciences, College of Natural Sciences, Chungbuk National University) ;
  • Cho, Sung-Jin (School of Biological Sciences, College of Natural Sciences, Chungbuk National University) ;
  • Lee, Hoon Bok (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Sung, Gi-Ho (Institute for Healthcare and Life Science, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University) ;
  • Subramani, Gayathri (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Kim, Myung Kyum (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University)
  • 김주영 (서울여자대학교 자연과학대학) ;
  • 정희영 (경북대학교 농업생명과학대학) ;
  • 박종석 (충북대학교 자연과학대학 생물과학부) ;
  • 조성진 (충북대학교 자연과학대학 생물과학부) ;
  • 이훈복 (서울여자대학교 자연과학대학) ;
  • 성기호 (가톨릭관동대학교 국제성모병원 및 의과대학) ;
  • 가야쓰리 수브라마니 (서울여자대학교 자연과학대학) ;
  • 김명겸 (서울여자대학교 자연과학대학)
  • Received : 2019.06.10
  • Accepted : 2019.09.04
  • Published : 2019.09.30

Abstract

An intensive interaction between yeasts and insects has highlighted their relevance for attraction to food and for the insect's development and behavior. Yeast associated in the gut of insects secretes cellulase which aided in the food digestion (cellulose degradation). Three strains of cellulose-degrading yeast were isolated from the gut of adult grasshoppers collected in Gyeonggi Province, South Korea. The strains $ON22^T$, $G10^T$, and $G15^T$, showed positive cellulolytic activity in the carboxymethyl cellulose (CMC)-plate assay. The phylogenetic tree based on sequence analysis of D1/D2 domains of the large subunit rRNA gene and the internal transcribed spacer (ITS) regions revealed that the strains $ON22^T$ (100 and 98.4% sequence similarities in D1/D2 domains and ITS) and $G10^T$ (99.8 and 99.5% in D1/D2 domain and ITS region) were most closely related to the species Moesziomyces aphidis JCM $10318^T$; $G15^T$ (100% in D1/D2 domains and ITS) belongs to the species Moesziomyces antarcticus JCM $10317^T$, respectively. Morphology and biochemical test results are provided in the species description. Cellulase with its massive applicability has been used in various industrial processes such as biofuels like bioethanol productions. Therefore, this is the first report of the cellulolytic yeast strains $ON22^T$, $G10^T$, and $G15^T$ related to the genus Moesziomyces in the family Ustilaginaceae (Ustilaginales), in Korea.

효모와 곤충 간의 집중적인 상호 작용은 곤충의 먹이에 대한 유인과 발달 및 행동에 대한 관련성을 보였다. 곤충 내장에서 분리된 효모는 먹이의 소화를 돕는 셀룰라아제(셀룰로오스 분해)를 분비한다. 한국의 경기도에서 수집한 메뚜기의 장에서 셀룰로오스를 분해하는 효모 세 균주를 분리 하였다. 효모 균주의 cellulase 활성을 확인하기 위해, 카르복시 메틸 셀룰로즈(CMC)를 함유하는 배지로 플레이트상의 투명한 영역을 요오드 용액을 사용하여 관찰하였다. 효모 $ON22^T$, $G10^T$$G15^T$ 균주는 CMC-플레이트 분석에서 양성 셀룰로오스 활성을 나타냈다. Large subunit rDNA 유전자와 Internal transcribed spacer (ITS) 영역의 D1/D2 영역의 서열 분석에 기초한 계통수를 통해 $ON22^T$$G10^T$ 균주가 Moesziomyces aphidis JCM 10318 (D1/D2 영역에서 각 100%와 99.8%, ITS 영역에서 각 98.4% 및 99.5% 서열유사성)와 가장 가깝고 G15는 Moesziomyces antarcticus JCM $10317^T$ 종 (D1/D2 영역에서 100%, ITS에서 100% 서열 유사성)에 속한다는 것을 밝혔다. 셀룰라아제는 바이오 에탄올 생산과 같은 바이오 연료와 같은 다양한 산업 공정에서 사용되고 있다. 따라서, 셀룰로오스 분해 미생물의 분리 및 연구는 중요성을 갖게 되었다. 이 논문은 한국의 Moesziomyces 속의 셀룰로오스 분해 효모 균주인 $ON22^T$, $G10^T$, $G15^T$에 대한 첫 번째 보고이다.

Keywords

References

  1. Boekhout T and Fell JW. 1998. Pseudozyma Bandoni emend. Boekhout and a comparison with the yeast state of Ustilago maydis (de Candolle) Corda. In Kurtzman, C.P. and Fell, J.W. (eds.), The Yeasts: a Taxonomic Study. Elsevier Science Publish, Amsterdam, pp. 790-797.
  2. Cubero F, Crespo A, Fatehi J, and Bridge DP. 1998. DNA extraction and PCR amplification method suitable for fresh, herbariumstored, lichenized, and other fungi. Plant Syst. Evol. 216, 243-249. https://doi.org/10.1007/BF01084401
  3. Dashtban M, Maki M, Leung KT, Mao C, and Qin W. 2010. Cellulase activities in biomass conversion: Measurement methods and comparison. Crit. Rev. Biotechnol. 30, 302-309. https://doi.org/10.3109/07388551.2010.490938
  4. Dillon RJ and Dillon VM. 2004. The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49, 71-92. https://doi.org/10.1146/annurev.ento.49.061802.123416
  5. Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  6. Fitch MW. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406-416. https://doi.org/10.2307/2412116
  7. Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, and Kondo A. 2002. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl. Environ. Microbiol. 68, 5136-5141. https://doi.org/10.1128/AEM.68.10.5136-5141.2002
  8. Goto S, Sugiyama J, and Iizuka H. 1969. A taxonomic study of Antarctic yeasts. Mycologia 61, 748-774. https://doi.org/10.1080/00275514.1969.12018794
  9. Hall TA. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98.
  10. Ito J, Fujita Y, Ueda M, Fukuda H, and Kondo A. 2004. Improvement of cellulose-degrading ability of a yeast strain displaying Trichoderma reesei endoglucanase II by recombination of cellulose-binding domains. Biotechnol. Prog. 20, 688-691. https://doi.org/10.1021/bp034332u
  11. Johnsen HR and Krause K. 2014. Cellulase activity screening using pure carboxymethylcellulose: application to soluble cellulolytic samples and to plant tissue prints. Int. J. Mol. Sci. 15, 830-838. https://doi.org/10.3390/ijms15010830
  12. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120. https://doi.org/10.1007/BF01731581
  13. Kumar S, Stecher G, and Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870-1874. https://doi.org/10.1093/molbev/msw054
  14. Kurtzman CP, Fell JW, Boekhout T, and Robert V. 2011. Chapter 7 - Methods for Isolation, Phenotypic Characterization and Maintenance of Yeasts. In Kurtzman CP, Fell JW, and Boekhout T (eds.). The Yeasts (Fifth Edition), pp. 87-110. Elsevier, London, UK.
  15. Kurtzman CP and Robnett CJ. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73, 331-371. https://doi.org/10.1023/A:1001761008817
  16. Lee SJ, Kim SR, Yoon HJ, Kim I, Lee KS, Je YH, Lee SM, Seo SJ, Dae Sohn H, and Jin BR. 2004. cDNA cloning, expression, and enzymatic activity of a cellulase from the mulberry longicorn beetle, Apriona germari. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139, 107-116. https://doi.org/10.1016/j.cbpc.2004.06.015
  17. Parahym AM, da Silva CM, Domingos Ide F, Goncalves SS, Rodrigues Mde M, de Morais VL, and Neves RP. 2013. Pulmonary infection due to Pseudozyma aphidis in a patient with burkitt lymphoma: first case report. Diagn. Microbiol. Infect. Dis. 75, 104-106. https://doi.org/10.1016/j.diagmicrobio.2012.09.010
  18. Romao-Dumaresq AS, Dourado MN, Favaro LC, Mendes R, Ferreira A, and Araujo WL. 2016. Diversity of cultivated fungi associated with conventional and transgenic sugarcane and the interaction between endophytic Trichoderma virens and the host plant. PLoS One 11, e0158974. https://doi.org/10.1371/journal.pone.0158974
  19. Saitou N and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  20. Sugita T, Nishikawa A, Ikeda R, and Shinoda T. 1999. Identification of medically relevant Trichosporon species based on sequences of internal transcribed spacer regions and construction of a database for Trichosporon identification. J. Clin. Microbiol. 37, 1985-1993. https://doi.org/10.1128/JCM.37.6.1985-1993.1999
  21. Takahashi S, Ueda M, and Tanaka A. 2000. Effect of the truncation of the C-terminal region of Kex2 endoprotease on processing of the recombinant Rhizopus oryzae lipase precursor in the coexpression system in yeast. J. Mol. Catal. B Enzym. 10, 233-240. https://doi.org/10.1016/S1381-1177(00)00130-2
  22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, and Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  23. Tomme P, Warren RAJ, and Gilkes NR. 1995. Cellulose hydrolysis by bacteria and fungi. Adv. Microbiol. Physiol. 37, 1-81. https://doi.org/10.1016/S0065-2911(08)60143-5
  24. Trevan, M. 1987. Techniques of Immobilization. In Immobilized Enzymes. An Introduction and Applications in Biotechnology (Trevan, M., ed.), pp. 1-9, Wiley, Chichester-New York.
  25. Van Rensburg P, Van Zyl WH, and Pretorius IS. 1998. Engineering yeast for efficient cellulose degradation. Yeast 14, 67-76. https://doi.org/10.1002/(SICI)1097-0061(19980115)14:1<67::AID-YEA200>3.0.CO;2-T
  26. Vu D, Groenewald M, Szöke S, Cardinali G, Eberhardt U, Stielow B, de Vries M, Verkleij GJM, Crous PW, Boekhout T, et al. 2016. DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud. Mycol. 85, 91-105. https://doi.org/10.1016/j.simyco.2016.11.007
  27. Wang QM, Begerow D, Groenewald M, Liu XZ, Theelen B, Bai FY, and Boekhout T. 2015. Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Stud. Mycol. 81, 55-83. https://doi.org/10.1016/j.simyco.2015.10.004
  28. Wang QM, Jia JH, and Bai FY. 2006. Pseudozyma hubeiensis sp. nov. and Pseudozyma shanxiensis sp. nov., novel ustilaginomycetous anamorphic yeast species from plant leaves. Int. J. Syst. Evol. Microbiol. 56, 289-293. https://doi.org/10.1099/ijs.0.63827-0
  29. Wei YH, Lee FL, Hsu WH, Chen WH, Chen CC, Wen CY, Lin SJ, Chu WS, Yuan GF, and Liou GY. 2005. Pseudozyma antarctica in Taiwan: a description based on morphological, physiological and molecular characteristics. Bot. Bull. Acad. Sin. 46, 223-229.
  30. White T, Bruns T, Lee S, and Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis M, Gelfand D, Shinsky J, and White T (eds.). PCR Protocols: A Guide to Methods and Applications, pp. 315-322. Academic Press.
  31. Yeoh HH, Khew E, and Lim G. 1985. A simple method for screening cellulolytic fungi. Mycologia 77, 161-162. https://doi.org/10.1080/00275514.1985.12025077
  32. Zhang YH, Hong J, and Ye X. 2009. Cellulase assays. Methods Mol. Biol. 581, 213-231. https://doi.org/10.1007/978-1-60761-214-8_14

Cited by

  1. 지렁이(Eisenia andrei)의 장으로부터 분리한 국내 미기록 야생효모들의 균학적 특성과 탄소원 활성 vol.48, pp.2, 2020, https://doi.org/10.4489/kjm.20200017