• Title/Summary/Keyword: Gene Targeting

Search Result 474, Processing Time 0.033 seconds

Effect of Tissue Factor on Invasion Inhibition and Apoptosis Inducing Effect of Oxaliplatin in Human Gastric Cancer Cell

  • Yu, Yong-Jiang;Li, Yu-Min;Hou, Xu-Dong;Guo, Chao;Cao, Nong;Jiao, Zuo-Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1845-1849
    • /
    • 2012
  • Objective: Tissue factor (TF) is expressed abnormally in certain types of tumor cells, closely related to invasion and metastasis. The aim of this study was to construct a human gastric cancer cell line SGC7901 stably-transfected with human TF, and observe effects on oxaliplatin-dependent inhibition of invasion and the apoptosis induction. Methods: The target gene TF was obtained from human placenta by nested PCR and introduced into the human gastric cell line SGC7901 through transfection mediated by lipofectamine. Stably-transfected cells were screened using G418. Examples successfully transfected with TF-pcDNA3 recombinant (experimental group), and empty vector pcDNA3 (control group) were incubated with oxaliplatin. Transwell chambers were used to show change in invasive ability. Caspase-3 activity was detected using a colorimetric method and annexin-V/PI double-staining was applied to detect apoptosis. Results: We generated the human gastric cancer cell line SGC7901/TF successfully, expressing TF stably and efficiently. Compared with the control group, invasion increased, whereas caspase-3 activity and apoptosis rate were decreased in the experimental group. Conclusion: TF can enhance the invasive capacity of gastric cancer cells in vitro. Its increased expression may reduce invasion inhibition and apoptosis-inducing effects of oxaliplatin and therefore may warrant targeting for improved chemotherapy.

Short-Hairpin RNA-Mediated MTA2 Silencing Inhibits Human Breast Cancer Cell Line MDA-MB231 Proliferation and Metastasis

  • Lu, Jun;Jin, Mu-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5577-5582
    • /
    • 2014
  • Objective: To observe the effects of metastasis-associated tumor gene family 2 (MTA2) depletion on human breast cancer cell proliferation and metastasis. Methods: A short-hairpin RNA targeting MTA2 was chemically synthesized and transfected into a lentivirus to construct Lv-shMTA2 for infection into the MDA-MB231 human breast cancer cell line. At 48 hours after infection cells were harvested and mRNA and protein levels of MTA2 were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting, respectively. Cell viability and metastasis were assessed by CCK-8, wound-healing assay and Transwell assay, respectively. In addition, a xenograft model of human breast cancer was constructed to investigate cancerous cell growth and capacity for metastasis. Results: After infection with Lv-shMTA2, mRNA and protein levels of MTA2 was significantly reduced (p<0.05) and MDA-MB231 cell proliferation and metastasis were inhibited (p<0.05). In addition, mean tumor size was smaller than that in control group nude mice (p<0.05) and numbers of metastatic deposits in lung were lower than in control group mice (p<0.05). Depletion of MTA2 affected MMP-2 and apoptosis-related protein expression. Conclusions: For the first time to our knowledge we showed that MTA2 depletion could significantly inhibit human breast cancer cell growth and metastasis, implying that MTA2 might be involved in the progression of breast cancer. The role of MTA2 in breast cancer growth and metastasis might be linked with regulation of matrix metalloproteinase and apoptosis.

miR-19a Promotes Cell Growth and Tumorigenesis through Targeting SOCS1 in Gastric Cancer

  • Qin, Shuang;Ai, Fang;Ji, Wei-Fang;Rao, Wang;Zhang, He-Cheng;Yao, Wen-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.835-840
    • /
    • 2013
  • Accumulating evidence has shown that microRNAs are involved in cancer development and progression. However, it remains unknown about the potential role of miR-19a in the pathogenesis of gastric cancer. Here, we report that suppressor of cytokine signaling 1 (SOCS1) is a novel target of miR-19a in gastric cancer cells and that miR-19a expression is inversely correlated with SOCS1 expression in gastric cancer cells and a subset of gastric cancer tissues. Ectopic expression of miR-19a dramatically promoted proliferation and tumorigenicity of gastric cancer cells both in vitro and in vivo. Moreover, we showed that silencing of SOCS1 promoted cell growth and colony formation resembling that of miR-19a overexpression, whereas re-introduction of SOCS1 (without the 3'-UTR) attenuated the pro-tumorigenic functions. Taken together, our findings suggest that the SOCS1 gene is a direct target of miR-19a, which functions as an oncogenic miRNA in gastric cancer by repressing the expression of tumor suppressor SOCS1.

MicroRNA-27 Promotes Odontoblast Differentiation via Wnt1 Signaling

  • Cho, Ji-Ho;Kim, Su-Gwan;Park, Byung-Sun;Go, Dae-San;Park, Joo-Cheol;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.40 no.4
    • /
    • pp.197-204
    • /
    • 2015
  • MicroRNA (miRNA, miR) is essential in regulating cell differentiation either by inhibiting mRNA translation or by inducing its degradation. However, the role of miRNA in odontoblastic cell differentiation is still unclear. In this study, we examined the molecular mechanism of miR-27-mediated regulation of odontoblast differentiation in MDPC-23 mouse odontoblastic cells derived from mouse dental papilla cells. The results of the present study demonstrated that the miR-27 expression increases significantly during MDPC-23 odontoblastic cell differentiation. Furthermore, miR-27 up-regulation promotes the differentiation of MDPC-23 cells and accelerates mineralization without cell proliferation. The over-expression of miR-27 significantly increased the expression levels of Wnt1 mRNA and protein. In addition, the results of target gene prediction revealed that Wnt1 mRNA has an miR-27 binding site in its 3'UTR, and is increased by miR-27. These results suggested that miR-27 promotes MDPC-23 odontoblastic cell differentiation by targeting Wnt1 signaling. Therefore, miR-27 is a critical odontoblastic differentiation molecular target for the development of miRNA based therapeutic agents in dental medicine.

Microbial Community Profiling in cis- and trans-Dichloroethene Enrichment Systems Using Denaturing Gradient Gel Electrophoresis

  • Olaniran, Ademola O.;Stafford, William H.L.;Cowan, Don A.;Pillay, Dorsamy;Pillay, Balakrishna
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.560-570
    • /
    • 2007
  • The effective and accurate assessment of the total microbial community diversity is one of the primary challenges in modem microbial ecology, especially for the detection and characterization of unculturable populations and populations with a low abundance. Accordingly, this study was undertaken to investigate the diversity of the microbial community during the biodegradation of cis- and trans-dichloroethenes in soil and wastewater enrichment cultures. Community profiling using PCR targeting the l6S rRNA gene and denaturing gradient gel electrophoresis (PCR-DGGE) revealed an alteration in the bacterial community profiles with time. Exposure to cis- and trans-dichloroethenes led to the disappearance of certain genospecies that were initially observed in the untreated samples. A cluster analysis of the bacterial DGGE community profiles at various sampling times during the degradation process indicated that the community profile became stable after day 10 of the enrichment. DNA sequencing and phylogenetic analysis of selected DGGE bands revealed that the genera Acinetobacter, Pseudomonas, Bacillus, Comamonas, and Arthrobacter, plus several other important uncultured bacterial phylotypes, dominated the enrichment cultures. Thus, the identified dominant phylotypes may play an important role in the degradation of cis- and trans-dichloroethenes.

TGF-β Signaling and miRNAs Targeting for BMP7 in the Spleen of Two Necrotic Enteritis-Afflicted Chicken Lines

  • Truong, Anh Duc;Hong, Yeojin;Lee, Janggeun;Lee, Kyungbaek;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Korean Journal of Poultry Science
    • /
    • v.44 no.3
    • /
    • pp.211-223
    • /
    • 2017
  • Transforming growth factor beta ($TGF-{\beta}$) signaling pathways are involved in the regulation of proliferation, differentiation, immunity, survival, and apoptosis of many cells. The aim of this study was to investigate the differential expression of $TGF-{\beta}$-related genes, and their interactions and regulators in the spleen of two genetically disparate chicken lines (Marek's disease resistant line 6.3 and Marek's disease-susceptible line 7.2) induced with necrotic enteritis (NE) by Eimeria maxima and Clostridium perfringens infection. By using high-throughput RNA-sequencing, we investigated 76 $TGF-{\beta}$-related genes that were significantly and differentially expressed in the spleens of the chickens. Approximately 20 $TGF-{\beta}$ pathway genes were further verified by qRT-PCR, and the results were consistent with our RNA sequencing data. All 76 identified genes were analyzed through Gene Ontology and mapped onto the KEGG chicken $TGF-{\beta}$ pathway. Our results demonstrated that several key genes, including $TGF-{\beta}$1-3, bone morphogenetic proteins (BMP)1-7, inhibitor of differentiation (ID) proteins ID1-3, SMAD1-9, and Jun, showed a markedly differential expression between the two chicken lines, relative to their respective controls. We then further predicted 24 known miRNAs that targeted BMP7 mRNA from 139 known miRNAs in the two chicken lines. Among these, six miRNAs were measured by qRT-PCR. In conclusion, this study is the first to analyze most of the genes, interactions, and regulators of the $TGF-{\beta}$ pathway in the innate immune responses of NE afflicted chickens.

Nrf2 Expression and Apoptosis in Quercetin-treated Malignant Mesothelioma Cells

  • Lee, Yoon-Jin;Lee, David M.;Lee, Sang-Han
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.416-425
    • /
    • 2015
  • NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor, has recently received a great deal of attention as an important molecule that enhances antioxidative defenses and induces resistance to chemotherapy or radiotherapy. In this study, we investigated the apoptosis-inducing and Nrf2- upregulating effects of quercetin on malignant mesothelioma (MM) MSTO-211H and H2452 cells. Quercetin treatment inhibited cell growth and led to upregulation of Nrf2 at both the mRNA and protein levels without altering the ubiquitination and extending the half-life of the Nrf2 protein. Following treatment with quercetin, analyses of the nuclear level of Nrf2, Nrf2 antioxidant response element-binding assay, Nrf2 promoter-luc assay, and RT-PCR toward the Nrf2-regulated gene, heme oxygenase-1, demonstrated that the induced Nrf2 is transcriptionally active. Knockdown of Nrf2 expression with siRNA enhanced cytotoxicity due to the induction of apoptosis, as evidenced by an increase in the level of proapoptotic Bax, a decrease in the level of antiapoptotic Bcl-2 with enhanced cleavage of caspase-3 and PARP proteins, the appearance of a sub-$G_0/G_1$ peak in the flow cytometric assay, and increased percentage of apoptotic propensities in the annexin V binding assay. Effective reversal of apoptosis was observed following pretreatment with the pan-caspase inhibitor Z-VAD. Moreover, Nrf2 knockdown exhibited increased sensitivity to the anticancer drug, cisplatin, presumably by potentiating the oxidative stress induced by cisplatin. Collectively, our data demonstrate the importance of Nrf2 in cytoprotection, survival, and drug resistance with implications for the potential significance of targeting Nrf2 as a promising strategy for overcoming resistance to chemotherapeutics in MM.

Molecular Prevalence of Cryptosporidium spp. among Companion Birds Kept in Pet Shops in Japan

  • Iijima, Yuko;Itoh, Naoyuki;Phrompraphai, Totsapon;Ito, Yoichi;Kimura, Yuya;Kameshima, Satoshi
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.3
    • /
    • pp.281-285
    • /
    • 2018
  • Cryptosporidium is the most common protozoan that can infect a wide range of animals, including mammals and birds. Avian Cryptosporidium spp. can cause enteric and respiratory diseases which can be fatal in birds and some species are zoonotic. Companion birds have the potential as reservoir due to their close contact with humans. Pet shops are the major source of companion birds. However, few reports are available regarding Cryptosporidium spp. infection among companion birds kept in pet shops. The present study reports the prevalence and molecular characteristics of Cryptosporidium spp. among companion birds kept in pet shops in Japan. A total of 265 fresh fecal samples were obtained from birds kept in 4 pet shops; these birds belonged to 41 species in 3 bird orders. A nested polymerase chain reaction (PCR) assay targeting the small subunit rRNA gene was employed for the detection of Cryptosporidium spp. A total of 24 samples (9.1%) were positive, and Cryptosporidium spp. were detected from all pet shops. The prevalence of Cryptosporidium spp. in each of the bird orders was 6.5% (10/153) in Psittaciformes, 14.4% (13/90) in Passeriformes, and 4.5% (1/22) in Galliformes. Based on sequence analysis, 13 (54.2%) isolates were classified to C. galli, 8 (33.3%) were avian genotype III, and the remaining 3 (12.5%) were C. baileyi. No infection with zoonotic C. meleagridis and no coinfection with multiple Cryptosporidium spp. and/or genotypes were observed. The zoonotic potential of Cryptosporidium spp. infecting companion birds kept in pet shops in Japan is likely to be low.

Investigation of Conserved Genes in Eukaryotes Common to Prokaryotes (원핵생물과 공통인 진핵생물의 보존적 유전자 탐색)

  • Lee, Dong-Geun
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.595-601
    • /
    • 2013
  • The clusters of orthologous groups of proteins (COG) algorithm was applied to identify essential proteins in eukaryotes and to measure the degree of conservation. Sixty-three orthologous groups, which were conserved in 66 microbial genomes, enlarged to 104 eukaryotic orthologous groups (KOGs) and 71 KOGs were conserved at the nuclear genome of 7 eucaryotes. Fifty-four of 71 translation-related genes were conserved, highlighting the importance of proteins in modern organisms. Translation initiation factors (KOG0343, KOG3271) and prolyl-tRNA synthetase (KOG4163) showed high conservation based on the distance value analysis. The genes of Caenorhabditis elegans appear to harbor high genetic variation because the genome showed the highest variation at 71 conserved proteins among 7 genomes. The 71 conserved genes will be valuable in basic and applied research, for example, targeting for antibiotic development.

Simultaneous Detection of 10 Foodborne Pathogens using Capillary Electrophoresis-Based Single Strand Conformation Polymorphism

  • Oh, Mi-Hwa;Hwang, Hee-Sung;Chung, Bo-Ram;Paik, Hyun-Dong;Han, Sang-Ha;Kang, Sun-Moon;Ham, Jun-Sang;Kim, Hyoun-Wook;Seol, Kuk-Hwan;Jang, Ae-Ra;Jung, Gyoo-Yeol
    • Food Science of Animal Resources
    • /
    • v.32 no.2
    • /
    • pp.241-246
    • /
    • 2012
  • This report outlines the development of a rapid, simple, and sensitive detection system for pathogenic bacteria using a capillary electrophoresis-based, single strand conformation polymorphism (CE-SSCP) combined with PCR. We demonstrate that this method, used with primers targeting the V4 region of the16S rRNA gene, is capable of the simultaneous detection of 10 microbes that could be associated with foodborne illness, caused by animal-derived foods: Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7, Campylobacter jejuni, Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, Yersinia enterocolitica, Vibrio parahaemolyticus, and Enterobacter sakazakii. The traditional detection techniques are time-consuming and labor-intensive, due to the necessary task of separate cultivation of each target species. As such, the CE-SSCP-PCR method, that we have developed, has the potential to diagnose pathogens rapidly, unlike the traditional technique, in order to prevent foodborne illness in a much more efficient manner.