DOI QR코드

DOI QR Code

Investigation of Conserved Genes in Eukaryotes Common to Prokaryotes

원핵생물과 공통인 진핵생물의 보존적 유전자 탐색

  • Lee, Dong-Geun (Department of Pharmaceutical Engineering, College of Medical and Life Sciences, Silla University)
  • 이동근 (신라대학교 의생명과학대학 제약공학과)
  • Received : 2013.01.21
  • Accepted : 2013.04.10
  • Published : 2013.04.30

Abstract

The clusters of orthologous groups of proteins (COG) algorithm was applied to identify essential proteins in eukaryotes and to measure the degree of conservation. Sixty-three orthologous groups, which were conserved in 66 microbial genomes, enlarged to 104 eukaryotic orthologous groups (KOGs) and 71 KOGs were conserved at the nuclear genome of 7 eucaryotes. Fifty-four of 71 translation-related genes were conserved, highlighting the importance of proteins in modern organisms. Translation initiation factors (KOG0343, KOG3271) and prolyl-tRNA synthetase (KOG4163) showed high conservation based on the distance value analysis. The genes of Caenorhabditis elegans appear to harbor high genetic variation because the genome showed the highest variation at 71 conserved proteins among 7 genomes. The 71 conserved genes will be valuable in basic and applied research, for example, targeting for antibiotic development.

생물들에서 생명의 본질적 기능을 수행하는 단백질들의 종류와 보존성을 밝히기 위해 COG (Clusters of Orthologous Groups of proteins) 알고리즘을 이용하였다. 66종의 미생물에서 보존적인 63개의 ortholog 그룹들은 진핵생물 7종에서 104개의 ortholog들로 확산되었으며, 7종 모두의 핵에 보존적인 KOG (euKaryotic Orthologous Group)은 71개였다. 71개 중 단백질 합성에 관여하는 유전자들이 총 54개로 생명현상에서의 단백질의 중요성을 확인할 수 있었다. Distance value로 보존적 유전자가 생물종 사이에 나타내는 유전자 변이의 정도를 파악하니 'Translation initiation factor'인 KOG3403과 KOG3271 그리고 'Prolyl-tRNA synthetase' (KOG4163) 등이 높은 보존성을 보였다. 보존적 KOG들의 평균과 분산으로 유전체 분석을 수행하여 꼬마선충이 KOG 평균사이의 편차가 제일 커 유전자의 변이가 다양한 것을 알 수 있었다. 본 연구결과는 기초연구와 항생제 개발 등에 이용될 수 있을 것이다.

Keywords

References

  1. Brenner, S. E. 2000. Target selection for structural genomics. Nat Struct Biol 7(Suppl), 967-969. https://doi.org/10.1038/80747
  2. Buysse, J. M. 2001. The role of genomics in antibacterial target discovery. Curr Med Chem 8, 1713-1726. https://doi.org/10.2174/0929867013371699
  3. Fraser, C. M., Eisen, J. A. and Salzberg, S. L. 2000. Microbial genome sequencing. Nature 406, 799-803. https://doi.org/10.1038/35021244
  4. ftp://ftp.ncbi.nih.gov/pub/COG/KOG/
  5. Gabaldon, T. and Huynen, M. A. 2003. Reconstruction of the proto-mitochondrial metabolism. Science 301, 609-609. https://doi.org/10.1126/science.1085463
  6. http://www.genome.jp/kegg/kegg2.html
  7. http://www.ncbi.nlm.nih.gov/COG/grace/shokog.cgi
  8. Jordan, I. K., Wolf, Y. I. and Koonin, E. V. 2004. Duplicated genes evolve slower than singletons despite the initial rate increase. BMC Evol Biol 4, 22. https://doi.org/10.1186/1471-2148-4-22
  9. Kang, H.-Y., Shin, C.-J., Kang, B.-C., Park, J.-H., Shin, D.-H., Choi, J.-H., Cho, H.-G., Cha, J.-H., Lee, D.-G., Lee, J.-H., Park, H.-K. and Kim, C.-M. 2002. Investigation of conserved gene in microbial genomes using in silico analysis. J Life Sci 5, 610-621. https://doi.org/10.5352/JLS.2002.12.5.610
  10. Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press.
  11. Lee, D.-G., Lee, J.-H., Lee, S.-H., Ha, B.-J., Kim, C.-M., Shim, D.-H., Park, E.-K., Kim, J.-W., Li, H.-Y., Nam, C.-S., Kim, N.-Y., Lee, E.-J., Back, J.-W. and Ha, J.-M. 2005. Investigation of conserved genes in microorganism. J Life Sci 15, 261-266. https://doi.org/10.5352/JLS.2005.15.2.261
  12. Lee, D.-G., Kim, C. M., Lee, E. U. and Lee, J. H. 2003. Genetic composition analysis of marine-origin euryarchaeota by using a COG algorithm. J Life Sci 13, 298-307. https://doi.org/10.5352/JLS.2003.13.3.298
  13. Mushegian, A. 1999. The minimal genome concept. Curr Opin Genet 9, 709-714. https://doi.org/10.1016/S0959-437X(99)00023-4
  14. Nei, M. and Rooney, A. P. 2005. Concerted and birth-anddeath evolution of multigene families. Annu Rev Genet 39, 121-152. https://doi.org/10.1146/annurev.genet.39.073003.112240
  15. Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E. V., Krylov, D. M., Mazumder, R., Mekhedov, S. L., Nikolskaya, A. N., Rao, B. S., Smirnov, S. Sverdlov, A. V., Vasudevan, S., Wolf, Y. I., Yin, J. J. and Natale, D. A. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41. https://doi.org/10.1186/1471-2105-4-41
  16. Tatusov, R. L., Koonin, E. V. and Lipman, D. L. 1997. A genomic perspective on protein families. Science 278, 631-637. https://doi.org/10.1126/science.278.5338.631
  17. Tekle, Y. I., Grant, J. R., Kovner, A. M., Townsend, J. P. and Katz, L. A. 2010. Identification of new molecular markers for assembling the eukaryotic tree of life. Mol Phylogenet Evol 55, 1177-1182. https://doi.org/10.1016/j.ympev.2010.03.010
  18. Thiergart, T., Landan, G., Schenk, M., Dagan, T. and Martin, W. F. 2012. An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biol Evol 4, 466-485. https://doi.org/10.1093/gbe/evs018
  19. Warner, J. and McIntosh, K. 2009. How common are extraribosomal functions of ribosomal proteins? Mol Cell 34, 3-11. https://doi.org/10.1016/j.molcel.2009.03.006
  20. Zhou, X., Lin, Z. and Ma, H. 2010. Phylogenetic detection of numerous gene duplications shared by animals, fungi and plants. Genome Biol 11, R38. https://doi.org/10.1186/gb-2010-11-4-r38

Cited by

  1. Comparison of Mitochondria-related Conserved Genes in Eukaryotes and Prokaryotes vol.24, pp.7, 2014, https://doi.org/10.5352/JLS.2014.24.7.791