• Title/Summary/Keyword: Gel pore

Search Result 254, Processing Time 0.031 seconds

Synthesis of spherical silica aerogel powder by emulsion polymerization technique

  • Hong, Sun Ki;Yoon, Mi Young;Hwang, Hae Jin
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.145-148
    • /
    • 2012
  • Spherical silica aerogel powders were fabricated via an emulsion polymerization method from a water glass. A water-in-oil emulsion, in which droplets of a silicic acid solution are emulsified with span 80 (surfactant) in n-hexane, was produced by a high power homogenizer. After gelation, the surface of the spherical silica hydrogels was modified using a TMCS (trimethylchlorosilane)/n-hexane solution followed by solvent exchange from water to n-hexane. Hydrophobic silica wet gel droplets were dried at 80 ℃ under ambient pressure. A perfect spherical silica aerogel powder between1 to 12 ㎛ in diameter was obtained and its size can be controlled by mixing speed. The tapping density, pore volume, and BET surface area of the silica aerogel powder were approximately 0.08 g·cm-3, 3.5 ㎤·g-1 and 742 ㎡·g-1, respectively.

Surface Modification of Nano Porous Silica Particle for Enzyme Immobilization (효소 고정화를 위안 실리카 나노세공 입자의 표면개질)

  • Cho, Hyung-Min;Kim, Jong-Kil;Kim, Ho-Kun;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.360-365
    • /
    • 2006
  • The objectives of this study were to develop nano-pore silica particles and to modify its surface for use as an enzyme immobilization matrix. Sol-gel reaction was used to produce silica particles of various nano pore sizes with hydroxyl groups on their surfaces. The surface was modified with aldehyde that was confirmed by fluorescence imaging. Trypsin was covalently immobilized by reductive amination. Surface density of the immobilized trypsin was ca. $350{\mu}g/m^2$, which was approximately 17- and 35-fold higher than those from the surfaces with hydroxyl and amine group, respectively. About 90% of the initial enzyme activity was maintained after the 12th use of repeated use. When compared with the commercial matrices, the nano-pore silica particle was superior in terms of immobilization yield and specific activity. This study suggests the nano porous silica particles can be used as enzyme immobilization matrix for industrial applications.

Effect of Membrane Materials on Membrane Fouling and Membrane Washing (막의 재질에 따른 막오염 특성 및 물리·화학적 세척의 영향)

  • Shim, Hyun-Sool;Jung, Chul-Woo;Son, Hee-Jong;Sohn, In-Shik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.500-505
    • /
    • 2007
  • The objectives of this research were to (1) identify the membrane fouling potential due to different fractions of NOM (2) correlate the physicochemical properties of NOM and membranes with the adsorption of humic substances on membrane (4) find out the effect of membrane physical and chemical washing according to membrane material. The static adsorption test and adsorption test showed that hydrophobic organics adsorbed much more quickly than hydrophilic organics. In case of the effect of membrane properties on the adsorption of organic fractions, the adsorption rate ratio(a) of hydrophobic membrane (0.016, 0.077) was greater than that of hydrophilic membrane (0.010, 0.033) regardless of the kind of organic fractions. This suggests that the UF membrane fouling were occurred mainly by internal pore size decreasing due to adsorption of organic into pore surface for hydrophobic membrane, and by sieving of organics and forming a gel layer on the membrane surface for hydrophilic membrane. In conclusion, the decrease in the pore volume, which was caused by the organic adsorption into the internal pore, was greater with the hydrophobic membrane than with the hydrophilic membrane. In case of the effect of membrane properties on permeate flux, the rate of flux decline for the hydrophobic membrane was significantly greater than that for the hydrophilic membrane.

Porous silica ceramics prepared by sol-gel process-Effect of $H_2O/TEOS$ molar ratio- (솔-젤법에 의한 다공성 실리카 세라믹스의 제조-$H_2O/TEOS$ 몰비의 영향-)

  • Lee, Jin-Hui;Kim, Wha-Jung;Lee, Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.216-224
    • /
    • 1997
  • Porous silica ceramics were prepared(with HCI catalyst) using H2O/TEOS molar ratios of 2.6~59.0, with the EtOH/TEOS ratio fixed. After preparing 9 kinds of sol, the followings were investigated; measurement of the gelation time, thermal analyses by TG/DTA, property analyses of the intermediates by FT-IR and X-ray diffractometry with dried samples, analyses of SiO2 polymer by FT-IR, the investigation of specific sur-face area and pore size distribution by N2-adsorption isotherm, and structural change of SiO2 polymer and pore morphology by TEM observation, with samples heat-treated to 50$0^{\circ}C$. In the concentrations of in-vestigated compositions and catalyst, gelation time showed a minimum at ca. 11 moles of water per one mole of TEOS, the highest degree of polymerization at ca. 8-18 moles, and the largest specific surface area at ca. 11 moles, which means that the polymerization proceeded fastest at ca. 11 moles of water. In con-clusion, the more water used, the faster the polymerization reaction up to ca. 11 moles, but more than ca. 11 moles of water caused retardation of gelation and resultant reduction of specific surface area.

  • PDF

Effect of Pore Structures of a Ti-49.5Ni (at%) Alloy on Bone Cell Adhesion (Ti-49.5Ni (at%)합금의 다공성 구조가 뼈 세포 흡착에 미치는 영향)

  • Im, Yeon-Min;Choi, Jung-Il;Khang, Dong-Woo;Nam, Tae-Hyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.66-70
    • /
    • 2012
  • Ti-Ni alloys are widely used in numerous biomedical applications (e.g., orthodontics, cardiovascular science, orthopaedics) due to their distinctive thermomechanical and mechanical properties, such as the shape memory effect, superelasticity and low elastic modulus. In order to increase the biocompatibility of Ti-Ni alloys, many surface modification techniques, such as the sol-gel technique, plasma immersion ion implantation (PIII), laser surface melting, plasma spraying, and chemical vapor deposition, have been employed. In this study, a Ti-49.5Ni (at%) alloy was electrochemically etched in 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF electrolytes to modify the surface morphology. The morphology, element distribution, crystal structure, roughness and energy of the surface were investigated by scanning electron microscopy (SEM), energy-dispersive Xray spectrometry (EDS), X-ray diffractometry (XRD), atomic force microscopy (AFM) and contact angle analysis. Micro-sized pores were formed on the Ti-49.5Ni (at%) alloy surface by electrochemical etching with 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF. The volume fractions of the pores were increased by increasing the concentration of the HF electrolytes. Depending on the HF concentration, different pore sizes, heights, surface roughness levels, and surface energy levels were obtained. To investigate the osteoblast adhesion of the electrochemically etched Ti-49.5Ni (at%) alloy, a MTT test was performed. The degree of osteoblast adhesion was increased at a high concentration of HF-treated surface structures.

Synthesis, Characterization, and Application of Zr,S Co-doped TiO2 as Visible-light Active Photocatalyst

  • Kim, Sun-Woo;Khan, Romana;Kim, Tae-Jeong;Kim, Wha-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1217-1223
    • /
    • 2008
  • A series of Zr,S co-doped $TiO_2$ were synthesized by a modified sol-gel method and characterized by various spectroscopic and analytical techniques. The presence of sulfur caused a red-shift in the absorption band of $TiO_2$. Co-doping of sulfur and zirconium (Zr-$TiO_2$-S) improves the surface properties such as surface area, pore volume, and pore diameter and also enhances the thermal stability of the anatase phase. The Zr-$TiO_2$-S systems are very effective visible-light active catalysts for the degradation of toluene. All reactions follow pseudo firstorder kinetics with the decomposition rate reaching as high as 77% within 4 h. The catalytic activity decreases in the following order: Zr-$TiO_2$-S >$TiO_2$-S >Zr-$TiO_2$>$TiO_2$$\approx$ P-25, demonstrating the synergic effect of codoping with zirconium and sulfur. When the comparison is made within the series of Zr-$TiO_2$-S, the catalytic performance is found to be a function of Zr-contents as follows: 3 wt % Zr-TiO2-S >0.5 wt % Zr-$TiO_2$-S> 5 wt % Zr-$TiO_2$-S >1 wt % Zr-$TiO_2$-S. Higher calcination temperature decreases the reactivity of Zr-$TiO_2$-S.

Synthesis of Li-Zr incorporated mesoporous $TiO_2$ and its application in $CO_2$ adsorption ($TiO_2$ 담지체에 합성된 Li-Zr 메조포러스 분자체 ; 이산화탄소 흡착 응용)

  • Bhagiyalakshmi, Margandan;Peng, Mei Mei;Hemalatha, Pushparaj;Ganesh, Mani;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.110-114
    • /
    • 2010
  • Li-incorporated mesoporous $TiO_2$ materials with various pore-sized istributions were synthesized by using triblockcopolymers via a sol-gel process in a queous solution. The properties of the se materials were characterized by HR-TEM, XRD, and BET analysis. All particles have spherical morphology with a diameterrange of $1-3{\mu}m$. The mesoporous $TiO_2$ materials calcined at $400^{\circ}C$ and their specific surface area, average pore size and crystallite sizes were 210 $m^2g^{-1}$, 6.4 nm and 8.8 nm respectively. The Li-incorporated mesoporous $TiO_2$ were tested for $CO_2$ adsorption and its adsorption capacity is 90mg/g. The Li-incorporated mesoporous $TiO_2$ ar eobserved to be thermally stable, recyclable and greens or bent for $CO_2$ capture. The effect of bimetallic $ZrLiTiO_2$ is also studied for $CO_2$ adsorption.

  • PDF

Study for Organic(Bio)-Inorganic Nano-Hybrid OMC

  • Lee, Jung-Eun;Ji, Hong-Geun;Park, Yoon-Chang;Lee, Kyoung-Chul;Yoo, Eun-Ah
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.178-191
    • /
    • 2003
  • OMC is essentialiy necessary compound in sun goods as organic UV protecting products. But the skin-trouble problem is raising because of skin penetration of OMC. In this study, non-capsulated pure OMC was compared with Organic-Inorganic-Nano-hybrid OMC for skin penetration force and SPF degree. Organic- Inorganic Nano-Hybrid OMC is OMC trapped in the pore of the mesoporous silica synthesized by the sol-gel method after OMC is nanoemulsified in the system of the hydrogenated Lecithin/ Ethanol/caprylic/capric triglyceride/OMC/water. OMC- nano- emulsion was obtained by a microfluidizing process at 1000bar and then micelle size in the nanoemulsion solution is 100-200nm range. Mesoporous silica nano-hybrid OMC was prepared by the process; surfactant was added in dissolved OMC-Nanoemulsion, then the rod Micelle was formed. OMC-nanoemulsion was capsulated in this rod Micelle and then silica precursor was added in the OMC-nanoemulsion solution. Through the hydrolysis reaction of the silica precursor, mesoporous silica concluding OMC-Nanocapsulation was obtained. The nano-hybrid surface of this OMC-Nanoemulsion-Inorganic system was treated with polyalkyl-silane compound. OMC-Mesoporous silica Nano-hybrids coated with polyalkyl-silane compound show the higher sun protecting factor (SPF Analyzer: INDEX 10-15) than pure OMC and could reduce a skin penetration of OMC. The physico-chemical properties of these nano-hybrids measured on the SPF index, partical size, strcture, specific surface area, pore size, morphology, UV absorption, rate of the OMC dissolution using SPF Analyzer, Laser light scattering system, XRD, BET, SEM, chroma Meter, HPLC, Image analyzer, microfluidizer, UV/VIS. spectrometer.

  • PDF

Enhanced Performance of La0.6Sr0.4Co0.2Fe0.8O3-\delta (LSCF) Cathodes with Graded Microstructure Fabricated by Tape Casting

  • Nie, Lifang;Liu, Ze;Liu, Mingfei;Yang, Lei;Zhang, Yujun;Liu, Meilin
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ (LSCF) powders with different particle sizes, synthesized through a citrate complexation method and a gel-casting technique, are used to fabricate porous LSCF cathodes with graded microstructures via tape casting. To create porous electrodes with desired porosity and pore structures, graphite and starch are used as pore former for different layers of the graded cathode. Examination of the microstructures of the as-prepared LSCF cathode using an SEM revealed that both grain size and porosity changed gradually from the catalytically active layer (near the electrodeelectrolyte interface) to the current collection layer (near the electrode-interconnect interface). Impedance analysis showed that a 3-layer LSCF cathode with graded microstructures exhibited much-improved performance compared to that of a single-layer LSCF cathode, corresponding to interfacial resistance of 0.053, 0.11, and 0.27 $\Omega{\cdot}cm^2$ at 800, 750, and $700^{\circ}C$ respectively.

Facile Preparation of Nanoporous Silica Aerogel Granules (나노다공성 실리카 에어로겔 과립의 간단 제조)

  • Kim, Nam Hyun;Hwang, Ha Soo;Park, In
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.209-213
    • /
    • 2011
  • Hydrophobic silica aerogel beads with low thermal conductivity and high porosity were prepared using a cost-effective sodium silicate as a silica source via an ambient-pressure drying process. Monolithic wet gels were first prepared by adjusting pH (~5) of a diluted sodium silicate solution. The silica aerogel beads (0.5~20 mm) were manufactured by breaking the wet gel monoliths under a simultaneous solvent exchange/surface modification process and an ambient-pressure drying process without using co-precursors or templates. Dried silica aerogel beads exhibit a comparable porosity ($593m^2/g$ of surface area, 34.9 nm of pore size, and $4.4cm^3/g$ of pore volume) to that of the aerogel powder prepared in the same conditions. Thermal conductivity of the silica aerogel beads (19.8 mW/mK at $20^{\circ}C$) is also identical to the aerogel powder.