DOI QR코드

DOI QR Code

Enhanced Performance of La0.6Sr0.4Co0.2Fe0.8O3-\delta (LSCF) Cathodes with Graded Microstructure Fabricated by Tape Casting

  • Nie, Lifang (School of Materials Science and Engineering, Georgia Institute of Technology) ;
  • Liu, Ze (School of Materials Science and Engineering, Georgia Institute of Technology) ;
  • Liu, Mingfei (School of Materials Science and Engineering, Georgia Institute of Technology) ;
  • Yang, Lei (School of Materials Science and Engineering, Georgia Institute of Technology) ;
  • Zhang, Yujun (Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University) ;
  • Liu, Meilin (School of Materials Science and Engineering, Georgia Institute of Technology)
  • Received : 2010.09.19
  • Accepted : 2010.09.24
  • Published : 2010.09.30

Abstract

$La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ (LSCF) powders with different particle sizes, synthesized through a citrate complexation method and a gel-casting technique, are used to fabricate porous LSCF cathodes with graded microstructures via tape casting. To create porous electrodes with desired porosity and pore structures, graphite and starch are used as pore former for different layers of the graded cathode. Examination of the microstructures of the as-prepared LSCF cathode using an SEM revealed that both grain size and porosity changed gradually from the catalytically active layer (near the electrodeelectrolyte interface) to the current collection layer (near the electrode-interconnect interface). Impedance analysis showed that a 3-layer LSCF cathode with graded microstructures exhibited much-improved performance compared to that of a single-layer LSCF cathode, corresponding to interfacial resistance of 0.053, 0.11, and 0.27 $\Omega{\cdot}cm^2$ at 800, 750, and $700^{\circ}C$ respectively.

Keywords

References

  1. L. Yang, C. Zuo, and W. Wang, Adv. Mater. 20, 3280 (2008). https://doi.org/10.1002/adma.200702762
  2. C. Xia and M. Liu, Adv. Mater. 14, 521 (2002). https://doi.org/10.1002/1521-4095(20020404)14:7<521::AID-ADMA521>3.0.CO;2-C
  3. Z. Shao and S. Haile, Nature 431, 170 (2004). https://doi.org/10.1038/nature02863
  4. K. Zhang, L. Ge, and R. Ran, Acta Mater. 56, 4876 (2008). https://doi.org/10.1016/j.actamat.2008.06.004
  5. V. Dusastre and J. Kilner. Solid State Ionics 126, 163 (1999). https://doi.org/10.1016/S0167-2738(99)00108-3
  6. E. Perry Murray, M.J. Sever, and S.A. Barnett, Solid State Ionics 148, 27 (2002). https://doi.org/10.1016/S0167-2738(02)00102-9
  7. H. Hamedani, K. Dahen, and D. Li, Mater. Sci. Eng. B153, 1 (2008).
  8. Y. Liu, C. Compson, and M. Liu, J. Power Sources 138, 194 (2004). https://doi.org/10.1016/j.jpowsour.2004.06.035
  9. M. Ni, M. Leung, and D. Leung, J. Power Sources 168, 369 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.005
  10. S. Jiang, S. Zhang, and Y. Zhen, J. Electrochem. Soc. 153, A127 (2006). https://doi.org/10.1149/1.2136077
  11. A. Esquirol, N.P. Brandon, and J. A. Kilner, J. Electrochem. Soc. 151(11), A1847 (2004). https://doi.org/10.1149/1.1799391
  12. F. Figueiredo, J. Labrincha, and J. Frade, Solid State Ionics 101, 343 (1997).
  13. F. Tietz, A. Mai, and D. Stover, Solid State Ionics 179, 1509 (2008). https://doi.org/10.1016/j.ssi.2007.11.037
  14. H. Jung, Y. Sun, H. Jung, J. Park, H. Kim, G. Kim, H. Lee, and J. Lee, Solid State Ionics 179, 1535 (2008). https://doi.org/10.1016/j.ssi.2008.01.063
  15. S. Bebelis, N. Kotsionopoulos, and A. Mai, J. Appl. Electrochem. 37, 15 (2007). https://doi.org/10.1007/s10800-006-9215-y
  16. F. Qiang, K. Sun, and N. Zhang, J. Solid State Electrochem. 13, 455 (2009). https://doi.org/10.1007/s10008-008-0581-8
  17. Z. Liu, M. Han, and W. Miao, J. Power Sources 173, 837 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.076
  18. H. Wang, S. Xie, and W. Lai, J. Mater. Sci. 34, 1163 (1999). https://doi.org/10.1023/A:1004592418985
  19. S. Zhang, M. Lynch, A.M. Gokhale, and M. Liu, J. Power Sources 192, 367 (2009). https://doi.org/10.1016/j.jpowsour.2009.03.043
  20. C. Hsu and B. Hwang, J. Electrochem. Soc. 153(8), A1478 (2006). https://doi.org/10.1149/1.2205153
  21. S. Liu, X. Qian, and J.Z. Xiao, J. Sol-Gel Sci Technol 44, 187 (2007). https://doi.org/10.1007/s10971-007-1628-5

Cited by

  1. Enhancement of the interfacial polarization resistance of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ cathode by microwave-assisted combustion method vol.43, pp.5, 2017, https://doi.org/10.1016/j.ceramint.2016.12.136
  2. Synthesis, structure and electrochemical performance of cobaltite-based composite cathodes for IT-SOFC vol.47, pp.7, 2012, https://doi.org/10.1002/crat.201100028
  3. Development of lanthanum strontium cobalt ferrite composite cathodes for intermediate- to low-temperature solid oxide fuel cells vol.14, pp.1, 2013, https://doi.org/10.1631/jzus.A1200134
  4. Direct octane fuel cells: A promising power for transportation vol.1, pp.3, 2012, https://doi.org/10.1016/j.nanoen.2012.02.006
  5. Performance evaluation of a tubular direct carbon fuel cell operating in a packed bed of carbon vol.68, 2014, https://doi.org/10.1016/j.energy.2014.01.105
  6. A new sol–gel precursor for preparation of La0.56Sr0.42Co0.2Fe0.8O3−δ film vol.78, pp.1, 2016, https://doi.org/10.1007/s10971-015-3905-z
  7. Electrochemical studies of perovskite cathode material for direct natural gas fuel cell vol.41, pp.4, 2016, https://doi.org/10.1016/j.ijhydene.2015.11.144
  8. The influence of PEEK as a pore former on the microstructure of brush-painted LSCF cathodes vol.20, pp.10, 2016, https://doi.org/10.1007/s10008-016-3300-x
  9. Citrate–hydrothermal synthesis, structure and electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes for IT-SOFCs vol.39, pp.7, 2013, https://doi.org/10.1016/j.ceramint.2013.04.019
  10. Fabrication and characterization of functionally-graded LSCF cathodes by tape casting vol.38, pp.2, 2013, https://doi.org/10.1016/j.ijhydene.2012.10.048
  11. Enhanced performance of LSCF cathode through surface modification vol.37, pp.10, 2012, https://doi.org/10.1016/j.ijhydene.2012.02.139
  12. Enhanced electrochemical performance of LSCF cathode through selection of optimum fabrication parameters vol.22, pp.1, 2018, https://doi.org/10.1007/s10008-017-3754-5
  13. Characterization of Solid Oxide Fuel Cells with LSCF-SDC Composite Cathodes vol.2018, pp.2314-615X, 2018, https://doi.org/10.1155/2018/4041960