• Title/Summary/Keyword: Gear noise

Search Result 418, Processing Time 0.048 seconds

Diagnostics on Gear Faults Using Transmission Error : Simulation vs Experiment (전달오차를 이용한 기어고장진단: 해석 vs 실험적 방법론)

  • Park, Jungho;Ha, Jongmoon;Choi, Jooho;Park, Sungho;Youn, Byeng D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.499-502
    • /
    • 2014
  • This paper presents a comparison study between simulation and experiment for fault diagnostics of a spur gear. In simulation, fault diagnostics using transmission error (TE) was performed and concluded to be valid. In a real experiment, however, it is not as easy to detect faults of gears using TE as in simulation. In this paper, after seeding the various faults like tooth crack of different length, tooth breakage and spalling in test rig, TE was calculated. Then, several signal processing techniques were performed to overcome the limitations of an experiment in detecting the fault signals of TE. After signal processing, we could detect the various faults of spur gears and different amplitude of TE sparks from cracks of different length. Then we discussed the difference between simulation and experment.

  • PDF

Vibration Characteristics Analysis of Reduction Unit for Railway Vehicles (국내 철도차량 감속기 진동특성분석)

  • Ji, Hae-Young;Kim, Jae-Chul;Lee, Dong-Hyung;Moon, Kyung-Ho;Lee, Kang-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.169-174
    • /
    • 2012
  • Reduction unit is one of the most important components for railway vehicle because torque of motor must be transmitted to wheels of vehicle by reduction unit. However, According to advanced studies, it has been often broke down due to the damage, fatigue and wear of gear. To solve this problem, defect diagnosis methods of gear have been mainly using the vibration diagnosis technology through vibration waveform and frequency analysis. However, We should know vibration characteristics of normal state reduction unit prior to defect diagnosis. So in this paper, We had analyzed vibration characteristics of reduction unit in order to utilize monitoring system development. Comparison of targets is the vibration characteristics of normal state reduction unit about Electric Multiple Unit(EMU) and the High-speed trains(KTX, KTX II).

  • PDF

Development of Direct Drive Motor for Next Generation Train (차세대전동차용 직접구동전동기 개발)

  • Kim, Gil-Dong;Lee, Han-Min;Lee, Jang-Mu;Oh, Se-Chan;Joung, Eui-Jin
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.688-694
    • /
    • 2009
  • As a drive system for next generation train, we have been making research and development of a direct drive traction motor system without the conventional reduction gear. This traction motor is expected to have many advantages such as low noise, reduced maintenance, and energy saving. Due to the demand for high-output motors in the limited space between the wheels, open-ventilating traction motors with gear box have been widely used for many years. However, a conventional open-ventilating traction motor is necessary periodical disassembly to remove the accumulated dust from open-air ventilation. Reducing this burden, as well as increasing energy efficiency and reducing noise, would benefit the next generation of traction motors. To address these needs, KRRI have been developing a fully enclosed type direct drive motor(DDM) with high-efficiency permanent magnet for the next generation train.

  • PDF

Rotordynamic Design and Analysis of the Rotor-Bearing System of a 600HP Gear Driven Turbo-Compressor (600HP급 기어구동형 터보 공기압축기 회전체계의 동역학적 설계 및 해석)

  • 최상규;김영철;권병수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.50-57
    • /
    • 1997
  • A 600HP class high-speed gear driven 3-stage turbo-compressor (IGCC : Integrally Geared Centrifugal Compressor) driven by a 3600 rpm AC induction motor has been designed, of which low speed pinion runs at 35000 rpm and high speed pinion at 50000 rpm nominally. Due to its high speed operation, the system requires very reliable bearing selection and design as well as accurate rotordynamic analysis and prediction of its dynamic behavior to secure the operating reliability. Rotordaynamic analyses of the IGCC rotor-bearing system predicted that the low speed pinion rotor mounted on 5-pad tilting pad bearings has two critical speeds before its design speed and high speed pinion rotor only one critical speed, and estimated critical speeds of both pinion shafts are away from the continuous operating speed enough to satisfy the corresponding API requirement. The forced response analysis with API specified maximum allowable unbalances also showed that unbalance responses are small enough for smooth operation of the system.

  • PDF

Review of the mitigations the exterior noise level of EMU (전동차 외부소음 저감 방안 검토)

  • Park, Kilbae;Park, HeaJun;Ki, Hocheul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.666-671
    • /
    • 2014
  • To reduce the exterior noise level of EMU, there are several ways have been evaluated. The noise sources for the exterior noise level are the traction motor, driving gear and wheel/rail rolling noise. In this article, the ways to mitigate the noise issue for EMU have been investigated and especially the way to protect the noise radiation from the bogie area and wheel/rail rolling noise. The way to evaluate the effect of the side skirt has been reviewed. To install the side skirt, the interface between the side skirt and the carbody and bogie should be examined and the acoustic design of the side skirt will be evaluated.

  • PDF

Analysis of the PTO Driveline Rattle Noise on an Agricultural Tractor (농업용 트랙터 PTO 전동라인의 래틀 소음 분석)

  • Ahn, Da-Vin;Shin, In-Kyung;Han, Hyun-Woo;Son, Gwan-Hee;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.45-54
    • /
    • 2019
  • In this study, we analyze the rattle noise of a power takeoff (PTO) driveline and develop a PTO driveline resonance model. We measured the rattle noise of the PTO driveline on the output shaft and, by analyzing the rattle noise in the time domain, we determine that the engine expansion stroke period matches the sound pressure of rattle noise. This finding helped us demonstrate that the rattle noise is caused by the collision between the PTO driving gear and the gear driven by the engine expansion stroke; the torsional vibration caused by this collision is affected by the angular velocity fluctuation of the PTO drive shaft. By measuring the angular velocity of the PTO drive shaft, we confirm that the angular velocity fluctuation of the engine flywheel tends to excessively amplify the PTO drive shaft angular velocity fluctuation. We conclude that the resonance, which occurs when the operating frequency of the engine is close to the natural frequency of the tractor power transmission system, causes the excessive angular velocity fluctuation of the PTO drive shaft. We performed a modal analysis of the PTO driveline resonance and, using the characteristic equation, we show that the resonance occurs when the engine rotation speed is close to 850 rpm, which matches the natural frequency of the PTO driveline.