• Title/Summary/Keyword: Gear Failure

Search Result 111, Processing Time 0.027 seconds

Design validation of a composite crash absorber energy to an emergency landing

  • Guida, Michele;Marulo, Francesco;Bruno, Massimiliano;Montesarchio, Bruno;Orlando, Salvatore
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.319-334
    • /
    • 2018
  • In this study, the failure mode and energy absorption capabilities of a composite shock absorber device, during an emergency landing are evaluated. The prototype has been installed and tested in laboratory simulating an emergency landing test condition. The crash absorber presents an innovative configuration able to reduce the loads transmitted to a helicopter fuselage during an emergency landing. It consists of a composite tailored tube installed on the landing gear strut. During an emergency landing this crash absorber system should be able to absorb energy through a pre-designed deformation. This solution, compared to an oleo-pneumatic shock absorber, avoids sealing checks, very high values of the shock absorber pressure, and results to be lighter, easy in maintenance, inspect and use. The activities reported in this paper have become an attractive research field both from the scientific viewpoint and the prospect of industrial applications, because they offer benefits in terms of energy absorbing, weight savings, increasing the safety levels, and finally reducing the costs in a global sense.

Accelerated Life Test Selection Study for Life Evaluation of Engine Type Drive Axle for Forklift (지게차용 엔진식 드라이브 액슬 수명평가를 위한 가속수명시험 선정 연구)

  • Jun-Young Kim;Yeong Jun Yu;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.9-14
    • /
    • 2023
  • In this paper, the selection of a reliable accelerated life test code for a 2-ton forklift was accomplished by choosing the driving resistance coefficient failure-free test time based on a 10,000-hour B10 life. The overall life and average equivalent load of the vehicle were then calculated based on actual driving test conditions using the selected driving resistance coefficient. The gear train's accelerated life test code was selected by adjusting the equivalent load to a torque and rotation speed that did not exceed 125%(about 75HP) of the vehicle rated power. The safety of the test standards was validated by conducting an actual accelerated life test utilizing the proposed test method in this study and comparing the test result with the corresponding theoretical value. It is anticipated that the reliability of the accelerated life test in this paper will be enhanced, by incorporating actual driving performance data collected directly from the forklift and adjusting the conditions used in developing the accelerated life test code.

A Study on the Detection of Fault Factor in Gear-Integrated Bearing (기어일체형 베어링의 결함인자 검출에 대한 연구)

  • Yeongsik Kang;Ina Yang;Eunjun Lee;Hwajong Jin;Donghyouk Shim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.113-121
    • /
    • 2023
  • High-precision lasers and anti-aircraft radars are the main equipment to protect the Korean Peninsula, and require preemptive maintenance before signs of failure. Of the key components in the drive sector, bearings do not have a fault alarm function. Therefore, the technology for diagnosing defects in bearings before the performance degradation of equipment occurs is becoming more important. In this paper, for the experimental analysis, we measured the acceleration of the four sets of the same lot using acceleration sensors. Through periodic measurements, the factors that changed until the bearing stopped rotating were analyzed. To determine the replacement time, the main factors and threshold values of the bearing signal were analyzed. The error of the theoretical and experimental analysis results of the defect frequency was within 2.8 %, and the validity of the theoretical analysis results could be confirmed. Based on the results, it is possible to remotely transmit trouble alerts to users through the system check function.

Accelerated Life Analysis and Endurance Verification of Electro-Mechanical Actuator (항공기용 전기식 날개 구동장치의 가속 수명 분석 및 시험을 통한 내구성 검증)

  • Huh, Seok Haeng;Lee, Byung Ho;Seol, Jin Woon;Baek, Joo Hyun;Yang, Myung Seok;Kwon, Jun Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.829-835
    • /
    • 2016
  • Electro-Mechanical Actuator installed on the aircraft plays a key role in an aircraft's flight control through flight control computer. Reliable prediction of the actuator is important for the aircraft. To estimate the lifetime of a product, it is necessary to test full target life. However, it is very difficult to perform it due to the long life time of actuator but short period of development time with increasing cost. Therefore, accelerated life test has been used to reduce the test time for various reasons such as reducing product's development cycle and cost. In this paper, to predict the lifetime of the actuator, we analyzed the flight profile of aircraft and adapted the method of accelerated life test in order to accelerate failure modes that might occur under user conditions. We also set up an endurance test equipment for validating the demanded lifetime of an actuator and performed accelerated life test.

Safety assessment of generation III nuclear power plant buildings subjected to commercial aircraft crash part III: Engine missile impacting SC plate

  • Xu, Z.Y.;Wu, H.;Liu, X.;Qu, Y.G.;Li, Z.C.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.417-428
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part III, the local damage of the rigid components of aircraft, e.g., engine and landing gear, impacting the steel concrete (SC) structures of NPP containment is mainly discussed. Two typical SC target panels with the thicknesses of 40 mm and 100 mm, as well as the steel cylindrical projectile with a mass of 2.15 kg and a diameter of 80 mm are fabricated. By using a large-caliber air gas gun, both the projectile penetration and perforation test are conducted, in which the striking velocities were ranged from 96 m/s to 157 m/s. The bulging velocity and the maximal deflection of rear steel plate, as well as penetration depth of projectile are derived, and the local deformation and failure modes of SC panels are assessed experimentally. Then, the commercial finite element program LS-DYNA is utilized to perform the numerical simulations, by comparisons with the experimental and simulated projectile impact process and SC panel damage, the numerical algorithm, constitutive models and the corresponding parameters are verified. The present work can provide helpful references for the evaluation of the local impact resistance of NPP buildings against the aircraft engine.

Development of a Pneumatic Semi-Automatic Clutch for Commercial Vehicles based on the CAN Communication (CAN통신 기반의 상용차용 공압구동형 세미오토 클러치 개발)

  • Kim, Seong-Jin;Lee, Dong-Gun;Ahn, Kyeong-Hwan;Lee, Seong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4742-4748
    • /
    • 2014
  • A semi-automatic clutch was developed for drivers of vehicles with manual transmission. The clutch is operated by pressing a switch on the gear stick without stepping on a clutch pedal when the driver wants to shift gears. To automatic control a clutch, driving information is provided by sensors installed under the vehicle. On the other hand, sensors are prone to failure under severe driving conditions and a long time is needed to install or repair these sensors in the vehicle. In this paper, a semi-automatic clutch that received driving information by CAN communication from the ECU was developed and a pneumatic actuator was used to operate the clutch. The semi-automatic clutch by a pneumatic cylinder was operated with a supply air pressure of more than 3bar.

Conceptual Design of Navigation Safety Module for S2 Service Operation of the Korean e-Navigation System

  • Yoo, Yun-Ja;Kim, Tae-Goun;Song, Chae-Uk;Hu, Shouhu;Moon, Serng-Bae
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.277-286
    • /
    • 2017
  • IMO introduced e-Navigation concept to improve the efficiency of ship operation, port operation, and ship navigation technology. IMO proposed sixteen MSPs (Maritime Service Portfolio) applicable to the ships and onshore in case of e-Navigation implementation. In order to meet the demands of the international society, the system implementation work for the Korean e-Navigation has been specified. The Korean e-Navigation system has five service categories: the S2 service category, which is a ship anomaly monitoring service, is a service that classifies emergency levels according to the degree of abnormal condition when a ship has an abnormality in ship operation, and provides guidance for emergency situations. The navigation safety module is a sub-module of the S2 service that determines the emergency level in case of navigation equipment malfunctioning, engine or steering gear failure during navigation. It provides emergency response guidance based on emergency level to the abnormal ship. If an abnormal condition occurs during the ship operation, first, the ship shall determine the emergency level, according to the degree of abnormality of the ship. Second, an emergency response guidance is generated based on the determined emergency level, and the guidance is transmitted to the ship, which helps the navigators prevent accidents and not to spread. In this study, the operational concept for the implementation of the Korean e-Navigation system is designed and the concept is focused on the navigation safety module of S2 service.

Transient Torsional Vibration Analysis of Ice-class Propulsion Shafting System Driven by Electric Motor (전기 모터 구동 대빙급 추진 시스템의 과도 비틀림 진동 분석)

  • Barro, Ronald D.;Lee, Don Chool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.667-674
    • /
    • 2014
  • A ship's propulsion shafting system is subjected to varying magnitudes of intermittent loadings that pose great risks such as failure. Consequently, the dynamic characteristic of a propulsion shafting system must be designed to withstand the resonance that occurs during operation. This resonance results from hydrodynamic interaction between the propeller and fluid. For ice-class vessels, this interaction takes place between the propeller and ice. Producing load- and resonance-induced stresses, the propeller-ice interaction is the primary source of excitation, making it a major focus in the design requirements of propulsion shafting systems. This paper examines the transient torsional vibration response of the propulsion shafting system of an ice-class research vessel. The propulsion train is composed of an electric motor, flexible coupling, spherical gears, and a propeller configuration. In this paper, the theoretical analysis of transient torsional vibration and propeller-ice interaction loading is first discussed, followed by an explanation of the actual transient torsional vibration measurements. Measurement data for the analysis were compared with an applied estimation factor for the propulsion shafting design torque limit, and they were evaluated using an existing international standard. Addressing the transient torsional vibration of a propulsion shafting system with an electric motor, this paper also illustrates the influence of flexible coupling stiffness design on resulting resonance. Lastly, the paper concludes with a proposal to further study the existence of negative torque on a gear train and its overall effect on propulsion shafting systems.

Interaction Contents for Reconsidering Visually Disabled Parents

  • Hong, Joo-Bong;Lee, Chan-Kyu;Lim, Chan
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.54-62
    • /
    • 2020
  • According to the Ministry of Health and Welfare, "Status of Registered Persons with Disabilities", the number of people with disabilities is 2,494,460 as of 2015. The lowest rates of children with disabilities were intellectual disabilities (23%) and mental disorders (33.3%). The highest rates of screening were blindness (97%), heart failure (94.4%), and hearing impairment (92.7%). 65.2% of visually impaired people who have already had a disability at the time of marriage, and the remaining 34.8% can be thought to be the cause of high incidence of disability after marriage. 'SID (Seed in the Dark)' project was designed to recapture the visually impaired parent's desire for attachment and the space difficulties of the blind who want to be a normal parent to their children through a visual impairment of a father with 7-year-old daughter. Using Gear VR(Virtual Reality), the general public was able to feel the surroundings as if they had no vision and focused on the hearing. Especially, We expressed the sound wave visually and added the hilarious game element which grasps the terrain of the maze by sound wave like a 'blind person who perceives the surroundings by sound' and catches up with daughter. People with disabilities who are far from mental illness often have a form of family with children. The fact that the rate of childbirth is high means that there is relatively little problem in daily life. It is wondered that the rate of blindness among the visually impaired, which accounts for 10% of the total disabled, is the highest at 97%. This is because, in the case of the visually impaired, the obstacle is often caused by aging, accidents, or diseases due to inherited causes rather than the visual disorder. In particular, However, the fact that there is an obstacle in vision that accounts for 83% of the body's sensory organs causes other difficulties in the nursing process of children who are non-disabled. Parents do not know the face of child when their visual impairment is severe. Parents are extremely anxious about worry that they will be lost or abducted if their children are not by their side. And that the child recognizes the disability of his or her parents other than the other parents easily and takes it as a deficiency. Since visually impaired parents are mentally mature parents with non-disabled people, they may want their children not to feel deprived of their disability. The number of people with visual impairments has been increasing since 2001, and people with impairments often become disabled. In addition, there is much research on the problem of nondisabled parents who have children with disabilities, while there is relatively little interest and research on the problem of nondisabled child rearing of parents with disabilities.

A Quantitative Risk Analysis of Related to Tower Crane Using the FMEA (타워크레인의 정량적 위험성 평가가법에 관한 연구(FMEA 기법 위주))

  • Shim, Kyu-Hyung;Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.34-39
    • /
    • 2010
  • The purpose of this study is to suggest objective evaluation model as a plan to utilize as opportunity in establishing judgment standard of mutual inspection criteria and to upgrade inspection ability by reviewing and analyzing level of danger and importance in advance based on inspection results of inspection institutions regarding tower cranes used in construction fields. Tower crane is a mechanical device transporting construction supplies and heavy materials to places over 20~150M high from the ground for the period ranging from a short time of 2~3 months to two years after being installed in construction sites in vicinity of buildings or structures and is an important facility indispensable for construction sites. However, since use period after installation is short and professional technical ability of technicians working on-site about of tower crane is poor, systematic and quantitative safety management is not carried out As a part of researches on procedure of RBI(Risk Based Inspection) possible to apply to Knowledge Based System based on knowledge and experiences of experts as well as to tower cranes for solving these problems, quantitative RPN(Risk Priority Number) was applied to RPN utilizing technique of FMEA(Failure Mode and Effect Analyses). When general RBI 80/20 Rule was applied parts with high level of risks were found out as wire rope, hoist up/down safety device, reduction gear, and etc. However, since there are still many insufficient parts as risk analyses of tower crane were not established, it is necessary for experts with sufficient experiences and knowledge to supplement active RBI techniques and continuous researches on tower cranes by sharing and setting up data base of important information with this study as a starting point.