• Title/Summary/Keyword: Gaze tracking

Search Result 163, Processing Time 0.025 seconds

Real Time Eye and Gaze Tracking (트래킹 Gaze와 실시간 Eye)

  • Min Jin-Kyoung;Cho Hyeon-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.234-239
    • /
    • 2004
  • This paper describes preliminary results we have obtained in developing a computer vision system based on active IR illumination for real time gaze tracking for interactive graphic display. Unlike most of the existing gaze tracking techniques, which often require assuming a static head to work well and require a cumbersome calibration process fur each person, our gaze tracker can perform robust and accurate gaze estimation without calibration and under rather significant head movement. This is made possible by a new gaze calibration procedure that identifies the mapping from pupil parameters to screen coordinates using the Generalized Regression Neural Networks (GRNN). With GRNN, the mapping does not have to be an analytical function and head movement is explicitly accounted for by the gaze mapping function. Furthermore, the mapping function can generalize to other individuals not used in the training. The effectiveness of our gaze tracker is demonstrated by preliminary experiments that involve gaze-contingent interactive graphic display.

  • PDF

Real Time Eye and Gaze Tracking

  • Park Ho Sik;Nam Kee Hwan;Cho Hyeon Seob;Ra Sang Dong;Bae Cheol Soo
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.857-861
    • /
    • 2004
  • This paper describes preliminary results we have obtained in developing a computer vision system based on active IR illumination for real time gaze tracking for interactive graphic display. Unlike most of the existing gaze tracking techniques, which often require assuming a static head to work well and require a cumbersome calibration process for each person, our gaze tracker can perform robust and accurate gaze estimation without calibration and under rather significant head movement. This is made possible by a new gaze calibration procedure that identifies the mapping from pupil parameters to screen coordinates using the Generalized Regression Neural Networks (GRNN). With GRNN, the mapping does not have to be an analytical function and head movement is explicitly accounted for by the gaze mapping function. Furthermore, the mapping function can generalize to other individuals not used in the training. The effectiveness of our gaze tracker is demonstrated by preliminary experiments that involve gaze-contingent interactive graphic display.

  • PDF

Development of a Non-contact Input System Based on User's Gaze-Tracking and Analysis of Input Factors

  • Jiyoung LIM;Seonjae LEE;Junbeom KIM;Yunseo KIM;Hae-Duck Joshua JEONG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.1
    • /
    • pp.9-15
    • /
    • 2023
  • As mobile devices such as smartphones, tablets, and kiosks become increasingly prevalent, there is growing interest in developing alternative input systems in addition to traditional tools such as keyboards and mouses. Many people use their own bodies as a pointer to enter simple information on a mobile device. However, methods using the body have limitations due to psychological factors that make the contact method unstable, especially during a pandemic, and the risk of shoulder surfing attacks. To overcome these limitations, we propose a simple information input system that utilizes gaze-tracking technology to input passwords and control web surfing using only non-contact gaze. Our proposed system is designed to recognize information input when the user stares at a specific location on the screen in real-time, using intelligent gaze-tracking technology. We present an analysis of the relationship between the gaze input box, gaze time, and average input time, and report experimental results on the effects of varying the size of the gaze input box and gaze time required to achieve 100% accuracy in inputting information. Through this paper, we demonstrate the effectiveness of our system in mitigating the challenges of contact-based input methods, and providing a non-contact alternative that is both secure and convenient.

Robust pupil detection and gaze tracking under occlusion of eyes

  • Lee, Gyung-Ju;Kim, Jin-Suh;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.10
    • /
    • pp.11-19
    • /
    • 2016
  • The size of a display is large, The form becoming various of that do not apply to previous methods of gaze tracking and if setup gaze-track-camera above display, can solve the problem of size or height of display. However, This method can not use of infrared illumination information of reflected cornea using previous methods. In this paper, Robust pupil detecting method for eye's occlusion, corner point of inner eye and center of pupil, and using the face pose information proposes a method for calculating the simply position of the gaze. In the proposed method, capture the frame for gaze tracking that according to position of person transform camera mode of wide or narrow angle. If detect the face exist in field of view(FOV) in wide mode of camera, transform narrow mode of camera calculating position of face. The frame captured in narrow mode of camera include gaze direction information of person in long distance. The method for calculating the gaze direction consist of face pose estimation and gaze direction calculating step. Face pose estimation is estimated by mapping between feature point of detected face and 3D model. To calculate gaze direction the first, perform ellipse detect using splitting from iris edge information of pupil and if occlusion of pupil, estimate position of pupil with deformable template. Then using center of pupil and corner point of inner eye, face pose information calculate gaze position at display. In the experiment, proposed gaze tracking algorithm in this paper solve the constraints that form of a display, to calculate effectively gaze direction of person in the long distance using single camera, demonstrate in experiments by distance.

Gaze Detection by Wearable Eye-Tracking and NIR LED-Based Head-Tracking Device Based on SVR

  • Cho, Chul Woo;Lee, Ji Woo;Shin, Kwang Yong;Lee, Eui Chul;Park, Kang Ryoung;Lee, Heekyung;Cha, Jihun
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.542-552
    • /
    • 2012
  • In this paper, a gaze estimation method is proposed for use with a large-sized display at a distance. Our research has the following four novelties: this is the first study on gaze-tracking for large-sized displays and large Z (viewing) distances; our gaze-tracking accuracy is not affected by head movements since the proposed method tracks the head by using a near infrared camera and an infrared light-emitting diode; the threshold for local binarization of the pupil area is adaptively determined by using a p-tile method based on circular edge detection irrespective of the eyelid or eyelash shadows; and accurate gaze position is calculated by using two support vector regressions without complicated calibrations for the camera, display, and user's eyes, in which the gaze positions and head movements are used as feature values. The root mean square error of gaze detection is calculated as $0.79^{\circ}$ for a 30-inch screen.

Glint Reconstruction Algorithm Using Homography in Gaze Tracking System (시선 추적 시스템에서의 호모그래피를 이용한 글린트 복원 알고리즘)

  • Ko, Eun-Ji;Kim, Myoung-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2417-2426
    • /
    • 2014
  • Remote gaze tracking system calculates the gaze from captured images that reflect infra-red LEDs in cornea. Glint is the point that reflect infra-red LEDs to cornea. Recently, remote gaze tracking system uses a number of IR-LEDs to make the system less prone to head movement and eliminate calibration procedure. However, in some cases, some of glints are unable to spot. In this case, it is impossible to calculate gaze. This study examines patterns of glints that are difficult to detect in remote gaze tracking system. Afterward, we propose an algorithm to reconstruct positions of missing glints that are difficult to detect using other detected glints. Based on this algorithm, we increased the number of valid image frames in gaze tracking experiments, and reduce errors of gaze tracking results by correcting glint's distortion in the reconstruction phase.

Analysis of the Fashion Shops' Images Applying Gaze Frequency (주시빈도를 적용한 패션숍 파사드 이미지 분석)

  • Yeo, Mi;Oh, Sun Ae
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.6
    • /
    • pp.212-219
    • /
    • 2013
  • This study uses a fashion shop facade design to track human gaze, find gaze frequency for gaze time for the gaze points along the path of sight, and expose the importance of facade design and figure out the value through theoretical systematization. Thus, this study employed the measurement method in physiological psychology which is sight-tracking device with eye-tracking to perform effective data evaluation. To find gaze frequency and study the contents to reflect on the facade, precedent study review, and case study of facade design to collect stimulants to be used in eye-tracking experiment were executed. And the eye-tracking experiment which traces the movement of eye[pupil] was performed. As the result of analyzing gaze frequency, The characteristics of such gaze path formation made the characteristics for gaze frequency even clearer. What was characteristic in the analysis result according to 'average value for gaze time' was that only 8 out of 2000 areas showed over 1 second of frequency and, and all other shoed less than 1 second of gaze time. This indicates that human sight endlessly jumps around, and that it 'Stay' where it has interest. This study found the average of the frequency of this 'Stay' in facade design. This study well presents the major points to add value to the design of the space of facade based on scientific measurement/analysis data obtained through visual understanding. Through such, this study is thought to be able to have a positive interaction with marketing by forming a theoretical background bringing utility to purchase environment and assisting in sales increase.

Real Time Eye and Gaze Tracking (실시간 눈과 시선 위치 추적)

  • Cho, Hyeon-Seob;Kim, Hee-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.195-201
    • /
    • 2005
  • This paper describes preliminary results we have obtained in developing a computer vision system based on active IR illumination for real time gaze tracking for interactive graphic display. Unlike most of the existing gaze tracking techniques, which often require assuming a static head to work well and require a cumbersome calibration process for each person, our gaze tracker can perform robust and accurate gaze estimation without calibration and under rather significant head movement. This is made possible by a new gaze calibration procedure that identifies the mapping from pupil parameters to screen coordinates using the Generalized Regression Neural Networks (GRNN). With GRNN, the mapping does not have to be an analytical function and head movement is explicitly accounted for by the gaze mapping function. Furthermore, the mapping function can generalize to other individuals not used in the training. The effectiveness of our gaze tracker is demonstrated by preliminary experiments that involve gaze-contingent interactive graphic display.

  • PDF

Real Time Eye and Gaze Tracking (실시간 눈과 시선 위치 추적)

  • 이영식;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.477-483
    • /
    • 2004
  • This paper describes preliminary results we have obtained in developing a computer vision system based on active IR illumination for real time gaze tracking for interactive graphic display. Unlike most of the existing gaze tracking techniques, which often require assuming a static head to work well and require a cumbersome calibration process for each person our gaze tracker can perform robust and accurate gaze estimation without calibration and under rather significant head movement. This is made possible by a new gaze calibration procedure that identifies the mapping from pupil parameters to screen coordinates using the Generalized Regression Neural Networks(GRNN). With GRNN, the mapping does not have to be an analytical function and head movement is explicitly accounted for by the gaze mapping function. Futhermore, the mapping function can generalize to other individuals not used in the training. The effectiveness of our gaze tracker is demonstrated by preliminary experiments that involve gaze-contingent interactive graphic display.

Development of Instruction Consulting Strategy for Improving Science Teacher's Gaze Empathy Using Eye-tracking (과학교사의 시선 공감 향상을 위한 시선 추적 기반 수업 컨설팅 전략 개발)

  • Kwon, Seung-Hyuk;Kwon, Yong-Ju
    • Journal of Science Education
    • /
    • v.42 no.3
    • /
    • pp.334-351
    • /
    • 2018
  • Teacher's gaze empathy for students in science class is considered to be effective in enhancing the learning effect. Thus, studies on gaze empathy have been conducted, but most of the studies are just to reveal the characteristics of gaze. Therefore, it is necessary to deal with a research to raise the level of science teacher's gaze empathy. The purpose of this study is to develop an instruction consulting strategy based on eye tracking for improving science teachers' gaze empathy. In this study, we selected and analyzed relevant literature on teacher's gaze empathy. We also designed a consulting strategy and then revised the design through expert reviews on validity and reliability. The developed consulting strategy was aimed to improve science teacher's gaze empathy and set quantitative goal based on eye tracking. The consulting strategy consisted of six steps: preparation for consulting, measurement and analysis of teacher's gaze empathy, instruction and feedback of gaze empathy, training for improving gaze empathy, evaluation of consulting result, and completion of the consulting. In addition, the consultation was completed or repeated again through the measurement and evaluation of gaze empathy using eye tracking. The developed consulting strategy has a value in that it provides an alternative with quantitative diagnosis and prescription for improving gaze empathy. The strategy can contribute to enhance teacher professional competency through the analysis of teaching behavior.