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Abstract: This paper describes preliminary results we have obtained in developing a computer vision
system based on active IR illumination for real time gaze tracking for interactive graphic display.
Unlike most of the existing gaze tracking techniques, which often require assuming a static head to
work well and require a cumbersome calibration process for each person, our gaze tracker can perform
robust and accurate gaze estimation without calibration and under rather significant head movement.
This is made possible by a new gaze calibration procedure that identifies the mapping from pupil
parameters to screen coordinates using the Generalized Regression Neural Networks (GRNN). With
GRNN, the mapping does not have to be an analytical function and head movement is explicitly
accounted for by the gaze mapping function. Furthermore, the mapping function can generalize to
other individuals not used in the training. The effectiveness of our gaze tracker is demonstrated by
preliminary experiments that involve gaze-contingent interactive graphic display.
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1. INTRODUCTION

Gaze determines the users current line of sight or
point of fixation. The fixation point is defined as the
intersection of the line of sight with the surface of the
object (such as the screen) being viewed. Gaze may be
used to interpret the users intention for non-command
interactions and to enable (fixation dependent)
accommodation and dynamic depth of focus. The potential
benefits for incorporating eye movements into the
interaction between humans and computers are numerous.
For example, knowing the location of a users gaze may
help a computer to interpret a users request and possibly
enable a computer to ascertain some cognitive states of the
user, such as confusion or fatigue.

In addition, real time monitoring of gaze position
permits the introduction of display changes that are
contingent on the spatial or temporal characteristics of eye
movements. Such methodology is referred to as gaze
contingent display paradigm. For example, gaze may be
used to determine ones fixation on the screen, which can

then used to infer what information the user is interested in.

Appropriate actions can then be taken such as increasing
the resolution or increasing the size of the region where
the user fixates. Another example is to economize on
bandwidth by putting high-resolution information only
where the user is currently looking.

Gaze tracking is therefore important for HCI and
intelligent graphics. Numerous techniques have been
developed including some commercial eyes trackers.
Video-based gaze estimation approaches can be
partitioned into head-based approach, ocular-based

approach, and the combined head and eye approach. The
head based approach determines eye gaze based on the
head orientation. In [9], a set of Gabor filters is aoplied
locally to the image region which includes the face. This
results in a feature vector to train a neural network to
predict the two neck angles, pan and tilt, providing the
desired information about head orientation. Gaze
estimation by head orientation, however, only provides a
global gaze since ones gaze can still vary considzrably
given the head orientation.

Ocular-based approach estimates gaze by establishing
the relationship between gaze and the geometric properties
of the iris or pupil within the eyes. Specifically, the
iris-based gaze estimation approach computes gaze by
determining the iris location or shape distortions from its
image while pupilbased approach determines gaze based
on the relative spatial positions between pupil and th> glint
(cornea reflection). Neural networks have been used in the
past for this task [1,11]. The idea is to extract a small
window containing the eye and feed it, after roper
intensity normalization, to a neural network. The output of
the network determines the coordinates of the gaze.

So far, the most common approach for ocular-based
gaze estimation is based on the relative position between
pupil and the glint on the comnea of the eye [2, 3, 4, £, 7, 8].
Assuming a static head, methods based on this idea 1 se the
glint as a reference point, thus the vector from the glint to
the center of the pupil will describe the gaze direction.
While contact-free and non-intrusive, these methods work
well only for a static head, which is a rather rest-ictive
constraint on the part of the user. Even minor head
movement can fail these techniques. This poses a
significant hurdle to natural human computer interaction
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(HCI). Another serious problem with the existing eyes and
gaze tracking systems is the need to perform a rather
cumbersome calibration process for each individual. The
latest research efforts are aimed at overcoming this
limitation. Researchers from NTT in Japan proposed {8] a
new gaze tracking technique based on modelling the
eyeball. Their technique significantly simplifies the gaze
calibration procedure, requiring only 2 points to p erform
the necessary calibration. The method, however, still
requires relatively stationary head, and there exists
difficulty in acquiring accurate geometric eyeball model
for each subject. Researchers from IBM ([7] is also
studying the feasibility of completely eliminating the need
of gaze calibration procedure by using two cameras and by
exploiting the geometry of eyes and their images. Other
recent efforts {12, 3] also focus on improving the eye
tracking robustness under various lighting conditions.

In this paper, we propose to improve this approach so
that gaze tracking can be accomplished robustly,
accurately, naturally, and without the need of calibration.

2. EYE TRACKING

Gaze tracking starts with eye tracking. For eye
tracking, we track pupils instead. We use infrared LEDs
that operate at a power of 32mW in a wavelength band
40nm wide at a nominal wavelength of 880nm. As in Ji [6],
we obtain a dark and a bright pupil image by illuminating
the eyes with IR LEDs located o_ (the outer IR ring) and
on the optical axis (the inner IR ring), respectively. To
further improve the quality of the image and to minimize
interference from light sources other than the IR
illuminator, we use an optical band-pass filter which has a
wavelength pass band only 10nm wide. The filter has
increased the signal-to-noise ratio significantly, compared
to the case without using the filter. Figure 1 illustrates the
IR illuminator consisting of two concentric IR rings and
the band-pass filter.
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Figure 1: Hardware setup: the camera with an active IR
illuminator.

Front View

Pupils detection and tracking start with pupils
detection in the initial frames, followed by tracking. Pupil
detection is accomplished based on both the intensity of
the pupils (the bright and dark pupils as shown in Fig. 3
and on the appearance of the eyes using the support vector
machine. The use of support vector machine (SVM)
avoids falsely identifying a bright region as a pupil
Specifically, candidates of pupils are first detected from
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the difference image resulted from subtracting the dark
pupil image from the bright pupil image. The pupil
candidates are then validated using SVM to remove
spurious pupil candidates. Given the detected pupils,
pupils in the subsequent frames can be detected efficiently
via tracking. Kalman filtering is used since it allows pupils
positions in the previous frame to predict pupils position in
current frame, therefore greatly limiting the search space.
Kalman filtering tracking based on pupil intensity is
therefore implemented. To avoid Kalman filtering go awry
due to the use of only intensity, Kalman filtering is
augmented by mean-shift tracking, which tracks an object
based on its intensity distribution. Details on eye detection
and tracking may be found in [12].

3. GAZE DETERMINATION AND TRACKING

Our gaze estimation algorithm consists of three parts:
pupilglint detection and tracking, gaze calibration, and
gaze mapping. For this research, ones gaze is quantized
into 8 regions on the screen (4 x 2) as shown in Fig.2.
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Figure 2: The quantized eye gaze regions on a computer screen

(b)
Figure 3: Bright (a) and dark (b) pupils images with glint.

3.1 Pupil and Glint Detection and Tracking

Gaze estimation starts with pupil-glint detection and
tracking. For gaze estimation, we continue using the IR
illuminator as shown in Figure 1. To produce the desired



pupil effects, the two rings are turned on and off
alternately via the video decoder we developed to produce
the so called bright and dark pupil effect as shown in
Figure 3 (a) and (b).

Note glint (the small brightest spot) appears on both
images. Given a bright pupil image, the pupil detection
and tracking technique described in section 2 can be
directly applied for pupil detection and tracking. The
location of a pupil at each frame is characterized by its
centroid. Algorithm-wise, glint can be detected much more
easily from the dark image since both glint and pupil
appear equally bright and sometimes overlap on the bright
pupil image. In the dark image on the other hand, the glint
is much brighter than the rest of the eye image, which
makes glint detection and tracking much easier. The pupil
detection and tracking technique can be used to detect and
track glint from the dark images. Figure 4 (c) show the
detected glint and pupil.

look left
(a) (b) (c)
look frontal

Figure 4: Relative spatial relationship between glint and bright
pupil center used to determine eye-gaze position. (a) bright pupil
images, (b) glint images; (c) pupilglint relationship generated by

superimposing glint to the thresholded bright pupil images.

3.2 Gaze Calibration

Given the detected glint and pupil, a mapping
function is often used to map the pupil-glint vector to gaze
(screen coordinates). Figure 4 shows the relationship
between gaze and the relative position between the glint
and the pupil. The mapping function is often determined
via a calibration procedure. The calibration process
determines the parameters for the mapping function given
a set of pupil-glint vectors and the corresponding screen
coordinates (gazes). The conventional approach for gaze
calibration suffers from two shortcomings: 1) most of the
mapping is assumed an analytical function of either linear
or second order polynomial, which may not be reasonable
due to perspective projection and spherical surface of the
eye; 2) only coordinate displacements between pupil
center and glint position are used for gaze estimation. This
makes the calibration face orientation dependent. Another
calibration is needed if the head has moved since last
calibration, even for minor head movement. In practice, it
is difficult to keep head still and the existing gaze tracking
methods will produce incorrect result if the head moves,
even slightly. Head movement must therefore be

incorporated in the gaze estimation procedure. Ancther
problem is that the mapping function derived for one
person is not applicable to another. The calibration rust,
therefore, be performed for each individual. Here, we
introduce a new gaze calibration based on Neural Network
to overcome these two limitations.

3.3 Gaze Calibration Via Generalized Regression
Neural Networks (GRNN)

The reason to use NN is because of the difficul:y in
analytically deriving the mapping function that relates
pupil and glint parameters to gaze under different face
poses and for different persons. Given sufficient pupil and
glint parameters, we believe there exists an urique
function that relate gaze to different pupil and glint
parameters.

Introduced in 1991 by D.L.Specht [10] as
generalization of both radial basis function networks
(RBFNs) and probabilistic neural networks (PNNs),
GRNNs have been successfully used in fun:tion
approximation applications. GRNNs are memory-tased
feed forward networks based on the estimation of
probability density functions. GRNNs feature fast tra ning
times, can model non-linear functions, and have been
shown to perform well in noisy environments given
enough data. Our experiments with different types o™ NN
also reveal superior perform of GRNN over the
conventional feed forward back propagation NN.

The GRNN topology consists of 4 layers: the input
layer, the hidden layer, the summation layer, anc. the
output layer. T he input layer has six inputs, representing
the six parameters while the output layer has one :1ode.
The number of hidden nodes is equal to the numbezr of
training samples, with one hidden node added for each set
of training sample. The number of nodes in the summation
layer is equal to the number of output nodes plus 1. Figure
5 shows the GRNN architecture we use.
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Figure 5: GRNN architecture used for gaze calibration

Due to significant difference in horizontal and
vertical spatial gaze resolution, two identical CRNN
networks were constructed, with output node represcnting
the horizontal and vertical gaze coordinates S, aad S,
respectively.

The parameters to use for the input layer mus: vary
with different face distances and orientations to the camera.
Specifically, the input vector to the GRNN is
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g= { AX, Ay' r e' g.rgy }

where /x and Ay are the pupil-glint displacement,
r is the ratio of the major to minor axes of the ellipse that
fits to the pupil, 6 is the ellipse orientation, and g, and g,
are the glint image coordinates.

The choice of these input parameters is based on the
following rational. Ax and Ay account for the relative
movement between the glint and the pupil. The magnitude
of the glint-pupil vector can also relate to the distance of
the subject to the camera. r is used to account for face
orientation. The ratio should be close to one when the face
is frontal. The ratio becomes larger or less than 1 when the
face tumns either up/down or left/right. Angle 6 is used
to account for face rotation around the camera optical axis.
Finally, (g, g,) are used to account for the in-plane head
translation. The use of these parameters allows to account
for both head and pupil movement since head movement
and pupil movement will introduce corresponding changes
to these parameters. This effectively reduces the head
movement influence. Furthermore, the input parameters
are chosen such that they remain relatively constant for
different people. For example, these parameters are
independent of the size of the pupils, which often vary
among people. The determined gaze mapping function,
therefore, will be able to generalize. This effectively
eliminates the need to re-calibrate for another person.

Before supplying to the GRNN, the input vector is
normalized appropriately. The normalization ensures all
input features are in the same range. A large amount of
training data under different head positions are collected to
train the GRNN. During the training data acquisition, the
user is asked to fixate his/her gaze on each gaze region. On
each fixation, 10 sets of input parameters are collected so
that outliers can be identified subsequently. Furthermore,
to collect representative data, we use one subject from
each race including an Asian subject and a Caucasian
subject. In the future, we will extend the training to
additional races. T he subjects ages range from 25 to 65.
The acquired training data, after appropriate preprocessing
(e.g., non-linear filtering to remove outliers) and
normalization, is then used to train the NN to obtain the
weights of the GRNN. GRNNs are trained using an
one-pass learning algorithm and is therefore very fast.

3.4 Gaze Mapping

After training, given an input vector, the GRNN can
then classify it into one of the 8 screen regions.

4. EXPERIMENTAL RESULTS AND
ANALYSIS

To validate the performance of our gaze tracker, we
perform a series of experiments that involve the use of
gaze to interactively determine what to display on the
screen.

The first experiment involves visual evaluation of our
eye tracking system. A laser pointer is used to point at the
different regions of the computer screen. As expected, the
user gaze is able to accurately follow the movement of the
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laser pointer which moves randomly from one gaze region
to another gaze region, even under natural head
movement.

To quantitatively characterize the accuracy of our
system, the second experiment studies the performance of
our system under different face orientations and distances
to the cameras, and with different subjects. Tables 1 and 2
summarize the classification results. We can see our
system can achieve an average of over 90% accuracy for
the same subject under different face poses and an average
of over 85% for a different subject.

Our study, however, shows that the system has some
difficulty with older people, especially for those who
suffer from some vision problem such as far-sighted or
near sighted.

Our experiments show that our system, working in
near real time (20 Hz) with an image resolution of
640 x 480 on a Pentium 4, allows about 6 inches left/right
and up/down .head translational movement and allows
+20 degrees left/right head rotation as well as *15
degrees up/down rotation. The distance to the camera
ranges from 3.5 feet to 5 feet. The spatial gaze resolution
is about 5 degrees horizontally and 8 degrees vertically,
which correspond to about 4 inches horizontally and 5
inches vertically at a distance about 4 feet away from the
screen.

Table 1: The classification results for gaze estimation with 100
testing gaze samples under different face poses for a person
whose data is included in the training set.

Gtrrzttlﬁd estimated result (mapping target #) Comect-ness
target®) | 1 (23 (a(5{6(7[a] e

1 94| 6 0 0 0 0 0 0 94

2 2 18] 8 0 0 0 0 0 80

3 0 3 18] 7 0 2 0 0 88

4 0 0 319 1 0 0 0 96

5 0 0 0 0 (%] 4 0 0 96

6 0 0 1 0 7 19 2 0 90

7 0 0 0 0 0 5|89 6 89

8 0 0 0 0 0 0 2 | 98 98

Table 2: The classification results for gaze estimation with 60
testing gaze samples for a new person whose data is not included
in the training set.

Gtrr(::\tJITd estimated result (mapping target #) Corect-ness
target#) {1 |2 3|4 [s|[6]7]8] ™™

1 49 | 11 0 0 0 0 0 [¢] 82

2 0152 8 0 0 0 0 87

3 0 0 |46 14| O 0 0 0 77

4 0 0 0 ]59} 1 0 0 0 98

5 0 o] ¢] 0|60} 0 0 0 100

6 0 0 0 6 8 146 | 0 0 77

7 0 0 2 0 5 153| 0 88

8 4 0 0 o] 6 | 50 84




Finally, we apply our gaze tracker to control graphic
display on the screen interactively. This experiment
involves the user gazes at a region of the computer screen
and then blink 3 times, the region being gazed is then
magnified to fill the screen. This repeats until the user can
obtain enough details for the region of interest. One
application this may be gaze-controlled map display as
shown in Figures 6, 7, and 8, which show gaze-controlled
map display at different levels of details.

During study, we found that the vertical pupil
movement range is much smaller than that of the
horizontal range, causing the vertical glint-pupil vector
measurement much more susceptible to external
perturbation such as head movement. This leads to much
lower SNR for the vertical data than that of the horizontal
data, therefore leading to lower gaze vertical resolution.
The current 4 x 2 gaze regions can be further refined to 4 x
3 or even 5 x 4. But this will lead to a decrease in tracking
accuracy. This problem, however, can be overcome if we
increase the image resolution.

5. CONCLUSIONS

In this paper, we present preliminary results for a new
technique for gaze tracking. Compared with the existing
gaze tracking methods, our method, though at a much
lower spatial gaze resolution (about 5 degrees), has the
following benefits: no calibration is necessary, allow
natural head movement, and completely non-intrusive and
obtrusive while still producing relatively robust and
accurate gaze tracking. The improvement is resulted from
using a new gaze calibration procedure based on GRNN.
With GRNN, we do not need assume an analytical gaze
mapping function and that we can account for head
movements in the mapping.

While our gaze tracker may not as accurate as some
commercial gaze tracker, it achieves sufficient accuracy
even under large head movement and more importantly, it
is calibrationfree. It has significantly relaxed the
constraints imposed by most existing commercial eye
trackers. We believe, after further improvement, our
system will find many applications including smart
graphics, human computer interaction, and assistance of
people with disability.
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