• Title/Summary/Keyword: Gaussian surface

Search Result 309, Processing Time 0.025 seconds

SOME CHARACTERIZATIONS OF CANAL SURFACES

  • Kim, Young Ho;Liu, Huili;Qian, Jinhua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.461-477
    • /
    • 2016
  • This work considers a particular type of swept surface named canal surfaces in Euclidean 3-space. For such a kind of surfaces, some interesting and important relations about the Gaussian curvature, the mean curvature and the second Gaussian curvature are found. Based on these relations, some canal surfaces are characterized.

ON MINIMAL SURFACES WITH GAUSSIAN CURVATURE OF BIANCHI SURFACE TYPE

  • Min, Sung-Hong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.379-385
    • /
    • 2021
  • We consider the local uniqueness of a catenoid under the condition for the Gaussian curvature analogous to Bianchi surfaces. More precisely, if a nonplanar minimal surface in ℝ3 has the Gaussian curvature $K={\frac{1}{(U(u)+V(v))^2}}$ for any functions U(u) and V (v) with respect to a line of curvature coordinate system (u, v), then it is part of a catenoid. To do this, we use the relation between a conformal line of curvature coordinate system and a Chebyshev coordinate system.

SURFACES FOLIATED BY ELLIPSES WITH CONSTANT GAUSSIAN CURVATURE IN EUCLIDEAN 3-SPACE

  • Ali, Ahmed T.;Hamdoon, Fathi M.
    • Korean Journal of Mathematics
    • /
    • v.25 no.4
    • /
    • pp.537-554
    • /
    • 2017
  • In this paper, we study the surfaces foliated by ellipses in three dimensional Euclidean space ${\mathbf{E}}^3$. We prove the following results: (1) The surface foliated by an ellipse have constant Gaussian curvature K if and only if the surface is flat, i.e. K = 0. (2) The surface foliated by an ellipse is a flat if and only if it is a part of generalized cylinder or part of generalized cone.

Analysis of surface settlement troughs induced by twin shield tunnels in soil: A case study

  • Ahn, Chang-Yoon;Park, Duhee;Moon, Sung-Woo
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.325-336
    • /
    • 2022
  • This paper analyzes the ground surface settlements induced by side-by-side twin shield tunnels bored in sedimentary soils, which primarily consist of sand with clay strata above the tunnel crown. The measurements were obtained during the construction of twin tunnels underneath the Incheon International Airport (IIA) located in Korea. The measured surface settlement troughs are approximated with Gaussian functions. The trough width parameters i and K of the settlement troughs produced by the first and second tunnel passings are determined, along with those for the total settlement trough. The surface settlement troughs produced by the first shield passing are reasonably represented by a symmetric Gaussian curve. The surface settlement troughs induced by the second shield tunnel display marginal asymmetric shapes at selected sections. The total settlement troughs are fitted both with a shifted symmetric Gaussian function and the superposition method utilizing an asymmetric function for the incremental trough produced by the second tunnel. It is revealed that the superposition method does not always produce better fits with the total settlement. Instead, the shifted symmetric Gaussian function is overall demonstrated to provide more favorable agreements with the recordings. Therefore, the shifted symmetric Gaussian function is recommended to be used in the design for the prediction of the settlement in clays caused by twin tunneling considering the simplicity of the procedure compared with the superposition method. The amount of increase in the width parameter K for the twin tunnel relative to that for the single tunnel is quantified, which can be used for a preliminary estimate of the surface settlement in clay induced by twin shield tunnels.

The Waveform Model of Laser Altimeter System with Flattened Gaussian Laser

  • Ma, Yue;Wang, Mingwei;Yang, Fanlin;Li, Song
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.363-370
    • /
    • 2015
  • The current waveform model of a laser altimeter is based on a Gaussian laser beam of fundamental mode, while the flattened Gaussian beam has many advantages such as nearly constant energy distribution on the center of the cross-section. Following the theory of the flattened Gaussian beam and the waveform theory of the laser altimeter, some of the primary parameters of the received waveform were derived, and a laser altimetry waveform simulator and waveform processing software were programmed and improved under the circumstance of a flattened Gaussian beam. The result showed that the bias between theoretical and simulated waveforms was less than 3% for every order mode, the waveform width and range error would increase as target slope or order number rose. Under higher order mode, the shapes of the received waveforms were no longer Gaussian, and could be fitted more precisely as a generalized Gaussian function with power bigger than 2. The flattened beam got much better performance for a multi-surface target, especially when the small surface is far from the center of the laser footprint. This article provides the waveform theoretical basis for the use of a flattened Gaussian beam in a laser altimeter.

A NOTE ON SURFACES IN THE NORMAL BUNDLE OF A CURVE

  • Lee, Doohann;Yi, HeungSu
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.211-218
    • /
    • 2014
  • In 3-dimensional Euclidean space, the geometric figures of a regular curve are completely determined by the curvature function and the torsion function of the curve, and surfaces are the fundamental curved spaces for pioneering study in modern geometry as well as in classical differential geometry. In this paper, we define parametrizations for surface by using parametric functions whose images are in the normal plane of each point on a given curve, and then obtain some results relating the Gaussian curvature of the surface with curvature and torsion of the given curve. In particular, we find some conditions for the surface to have either nonpositive Gaussian curvature or nonnegative Gaussian curvature.

AN EXPLICIT NUMERICAL ALGORITHM FOR SURFACE RECONSTRUCTION FROM UNORGANIZED POINTS USING GAUSSIAN FILTER

  • KIM, HYUNDONG;LEE, CHAEYOUNG;LEE, JAEHYUN;KIM, JAEYEON;YU, TAEYOUNG;CHUNG, GENE;KIM, JUNSEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • We present an explicit numerical algorithm for surface reconstruction from unorganized points using the Gaussian filter. We construct a surface from unorganized points and solve the modified heat equation coupled with a fidelity term which keeps the given points. We apply the operator splitting method. First, instead of solving the diffusion term, we use the Gaussian filter which has the effect of diffusion. Next, we solve the fidelity term by using the fully implicit scheme. To investigate the proposed algorithm, we perform computational experiments and observe good results.

Initial Second Harmonic Generation in Narrowband Surface Waves by Multi-Line Laser Beams for Two Kinds of Spatial Energy Profile Models: Gaussian and Square-Like

  • Choi, Sungho;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.257-263
    • /
    • 2013
  • Acoustic nonlinearity of surface waves is an effective method to evaluate the micro damage on the surface of materials. In this method, the $A_1$ (magnitude of the fundamental wave) and $A_2$ (magnitude of the second-order harmonic wave) are measured for evaluation of acoustic nonlinearity. However, if there is another source of second-order harmonic wave other than the material itself, the linear relationship between $A_1{^2}$ and $A_2$ will not be guaranteed. Therefore, the second-order harmonic generation by another source should be fully suppressed. In this paper, we investigated the initial second-order harmonic generation in narrowband surface waves by multi-line laser beams. The spatial profile of laser beam was considered in the cases of Gaussian and square-like. The temporal profile was assumed to be Gaussian. In case of Gaussian spatial profile, the generation of the initial second-order harmonic wave was inevitable. However, when the spatial profile was square-like, the generation of the initial second-order harmonic wave was able to be fully suppressed at specific duty ratio. These results mean that the multi-line laser beams of square-like profile with a proper duty ratio are useful to evaluate the acoustic nonlinearity of the generated surface waves.

Gaussian Model for Laser Image on Curved Surface

  • Annmarie Grant;Sy-Hung Bach;Soo-Yeong Yi
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.701-707
    • /
    • 2023
  • In laser imaging, accurate extraction of the laser's center is essential. Several methods exist to extract the laser's center in an image, such as the geometric mean, the parabolic curve fitting, and the Gaussian curve fitting, etc. The Gaussian curve fitting is the most suitable because it is based on the physical properties of the laser. The width of the Gaussian laser beam depends on the distance from the laser source to the target object. It is assumed in general that the distance remains constant at a laser spot resulting in a symmetric Gaussian model for the laser image. However, on a curved surface of the object, the distance is not constant; The laser beam is narrower on the side closer to the focal point of the laser light and wider on the side closer to the laser source, which causes the distribution of the laser beam to skew. This study presents a modified Gaussian model in the laser imaging to incorporate the slant angle of a curved object. The proposed method is verified with simulation and experiments.

Quantification of the Scum on the Black Matrix Surface of Color Filter for LCD (LCD용 칼라필터의 Black Matrix 표면에 발생하는 잔사의 정량화)

  • Koo, Young-Mo;Lee, Jong-Seo;Yi, Choong-Hoon
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.415-420
    • /
    • 1999
  • We estimated the quantity of the scum remaining on the Black Matrix (BM) surface of color filter. To do this, histogram was analyzed which was obtained from AFM image of the BM surface. We divided the histogram to two Gaussian functions of the free BM surface (1) and the scum (2), and calculated the areas ($a_1$, $a_2$) of both the Gaussian functions. We quantified the residue as the ratio of the area ($a_2/(a_1+a_2)$). As a result of the Gaussian functions of the free BM surface, it was revealed that another kind of residue remained on the BM surface. It was difficult to quantify it. but it could relatively be estimated from the average height and the standard deviation.

  • PDF