• Title/Summary/Keyword: Gaussian process model

Search Result 241, Processing Time 0.025 seconds

Comparison of artificial intelligence models reconstructing missing wind signals in deep-cutting gorges

  • Zhen Wang;Jinsong Zhu;Ziyue Lu;Zhitian Zhang
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.75-91
    • /
    • 2024
  • Reliable wind signal reconstruction can be beneficial to the operational safety of long-span bridges. Non-Gaussian characteristics of wind signals make the reconstruction process challenging. In this paper, non-Gaussian wind signals are converted into a combined prediction of two kinds of features, actual wind speeds and wind angles of attack. First, two decomposition techniques, empirical mode decomposition (EMD) and variational mode decomposition (VMD), are introduced to decompose wind signals into intrinsic mode functions (IMFs) to reduce the randomness of wind signals. Their principles and applicability are also discussed. Then, four artificial intelligence (AI) algorithms are utilized for wind signal reconstruction by combining the particle swarm optimization (PSO) algorithm with back propagation neural network (BPNN), support vector regression (SVR), long short-term memory (LSTM) and bidirectional long short-term memory (Bi-LSTM), respectively. Measured wind signals from a bridge site in a deep-cutting gorge are taken as experimental subjects. The results showed that the reconstruction error of high-frequency components of EMD is too large. On the contrary, VMD fully extracts the multiscale rules of the signal, reduces the component complexity. The combination of VMD-PSO-Bi-LSTM is demonstrated to be the most effective among all hybrid models.

A Multiresolution Model Generation Method Preserving View Directional Feature (시점과의 방향관계를 고려한 다단계 모델 생성 기법)

  • Kim, HyungSeok;Jung, SoonKi;Wohn, KwangYun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • The idea of level-of-detail based on multiresolution model is gaining popularity as a natural means of handling the complexity regarding the realtime rendering of virtual environments. To generate an effective multiresolution model, we should capture the prominent visual features in the process of simplifying original complex model. In this paper, we incorporate view dependent features such as silhouette features and backface features, to the generation process of multiresolution model. To capture the view directional parameter, we propose multiresolution view sphere. View sphere maps the directional relationship between object surface and the view. Using the view sphere, coherence in the directional space is mapped into spatial coherence in the view sphere. View sphere is generated in multiresolution fashion to simplify the object. To access multiresolution view sphere efficiently, we devise quad tree for the view sphere. We also devise a mechanism for realtime simplification process using proposed view sphere. Using proposed mechanism, regenerating simplified model in realtime is effectively done in the order of number of rendered vertices.

  • PDF

Background Subtraction in Dynamic Environment based on Modified Adaptive GMM with TTD for Moving Object Detection

  • Niranjil, Kumar A.;Sureshkumar, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.372-378
    • /
    • 2015
  • Background subtraction is the first processing stage in video surveillance. It is a general term for a process which aims to separate foreground objects from a background. The goal is to construct and maintain a statistical representation of the scene that the camera sees. The output of background subtraction will be an input to a higher-level process. Background subtraction under dynamic environment in the video sequences is one such complex task. It is an important research topic in image analysis and computer vision domains. This work deals background modeling based on modified adaptive Gaussian mixture model (GMM) with three temporal differencing (TTD) method in dynamic environment. The results of background subtraction on several sequences in various testing environments show that the proposed method is efficient and robust for the dynamic environment and achieves good accuracy.

A Study on Cutting Mechanism and Heat Transfer Analysis in Laser Cutting Process (FDM을 이용한 레이저 절단 공정에서의 절단 메카니즘 및 절단폭의 해석)

  • 박준홍;한국찬;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2418-2425
    • /
    • 1993
  • A two-dimensional transient heat transfer model for reactive gas assisted laser cutting process with a moving Gaussian heat source is developed using a numerical finite difference technique. The kerf width, melting front shape and temperature distribution were calculated by using the boundary-fitted coordinate system to handle the ejection of workpiece material and heat input from reaction and evaporation. An analytical solution for cutting front movement was adopted and numerical simulation was performed to calculate the temperature distribution and melting front thickness. To calculate the moving velocity of cutting front, the normal distribution of the cutting gas velocity was used. The kerf width was revealed to be dependent on the cutting velocity, laser power and cutting gas velocity.

Robust Multiuser Detection Based on Least p-Norm State Space Filtering Model

  • Zha, Daifeng
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.185-191
    • /
    • 2007
  • Alpha stable distribution is better for modeling impulsive noises than Gaussian distribution in signal processing. This class of process has no closed form of probability density function and finite second order moments. In general, Wiener filter theory is not meaningful in S$\alpha$SG environments because the expectations may be unbounded. We proposed a new adaptive recursive least p-norm Kalman filtering algorithm based on least p-norm of innovation process with infinite variances, and a new robust multiuser detection method based on least p-norm Kalman filtering. The simulation experiments show that the proposed new algorithm is more robust than the conventional Kalman filtering multiuser detection algorithm.

A Missing Value Replacement Method for Agricultural Meteorological Data Using Bayesian Spatio-Temporal Model (농업기상 결측치 보정을 위한 통계적 시공간모형)

  • Park, Dain;Yoon, Sanghoo
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.499-507
    • /
    • 2018
  • Agricultural meteorological information is an important resource that affects farmers' income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio-temporal model suggests replacements for missing values because the meteorological information includes spatio-temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root-mean-square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.

Development of Time Varying Kalman Smoother for Extracting Fetal ECG using Independent Component Analysis : Preliminary Study (독립요소분석을 이용한 태아심전도 추출을 위한 시변 칼만 평활기의 개발 : 예비연구)

  • Lee, Chung Keun;Kim, Bong Soo;Kwon, Ja Young;Choi, Young Deuk;Song, Kwang Soup;Nam, Ki Chang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.202-208
    • /
    • 2012
  • Fetal heart rate monitoring is important information to assess fetal well-being. Non-invasive fetal ECG (electrocardiography) can be derived from maternal abdominal signal. And various promising signal processing methods have been introduced to extract fetal ECG from mother's composite abdominal signal. However, non-invasive fetal ECG monitoring still has not been widely used in clinical practice due to insufficient reliable measurement and difficulty of signal processing. In application of signal processing method to extract fetal ECG, it might be lower signal to noise ratio due to time varying white Gaussian noise. In this paper, time varying Kalman smoother is proposed to remove white noise in fetal ECG and its feasibility is confirmed. Wiener process was set as Kalman system model and covariance matrix was modified according to white Gaussian noise level. Modified error covariance matrix changed Kalman gain and degree of smoothness. Optimal covariance matrix according to various amplitude in Gaussian white noise was extracted by 5 channel fetal ECG model, and feasibility of proposed method could be confirmed.

Genetically Optimized Fuzzy Polynomial Neural Networks Model and Its Application to Software Process (진화론적 최적 퍼지다항식 신경회로망 모델 및 소프트웨어 공정으로의 응용)

  • Lee, In-Tae;Park, Ho-Sung;Oh, Sung-Kwun;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.337-339
    • /
    • 2004
  • In this paper, we discuss optimal design of Fuzzy Polynomial Neural Networks by means of Genetic Algorithms(GAs). Proceeding the layer, this model creates the optimal network architecture through the selection and the elimination of nodes by itself. So, there is characteristic of flexibility. We use a triangle and a Gaussian-like membership function in premise part of rules and design the consequent structure by constant and regression polynomial (linear, quadratic and modified quadratic) function between input and output variables. GAs is applied to improve the performance with optimal input variables and number of input variables and order. To evaluate the performance of the GAs-based FPNNs, the models are experimented with the use of Medical Imaging System(MIS) data.

  • PDF

A Study on Modeling of Search Space with GA Sampling

  • Banno, Yoshifumi;Ohsaki, Miho;Yoshikawa, Tomohiro;Shinogi, Tsuyoshi;Tsuruoka, Shinji
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.86-89
    • /
    • 2003
  • To model a numerical problem space under the limitation of available data, we need to extract sparse but key points from the space and to efficiently approximate the space with them. This study proposes a sampling method based on the search process of genetic algorithm and a space modeling method based on least-squares approximation using the summation of Gaussian functions. We conducted simulations to evaluate them for several kinds of problem spaces: DeJong's, Schaffer's, and our original one. We then compared the performance between our sampling method and sampling at regular intervals and that between our modeling method and modeling using a polynomial. The results showed that the error between a problem space and its model was the smallest for the combination of our sampling and modeling methods for many problem spaces when the number of samples was considerably small.

  • PDF

Fuzzy-Neural Networks by Means of Division of Fuzzy Input Space with Multi-input Variables (다변수 퍼지 입력 공간 분할에 의한 퍼지-뉴럴 네트워크)

  • Park, Ho-Sung;Yoon, Ki-Chan;Oh, Sung-Kwun;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.824-826
    • /
    • 1999
  • In this paper, we design an Fuzzy-Neural Networks(FNN) by means of divisions of fuzzy input space with multi-input variables. Fuzzy input space of Yamakawa's FNN is divided by each separated input variable, but that of the proposed FNN is divided by mutually combined input variables. The membership functions of the proposed FNN use both triangular and gaussian membership types. The parameters such as apexes of membership functions, learning rates, momentum coefficients, weighting value, and slope are adjusted using genetic algorithms. Also, an aggregate objective function(performance index) with weighting value is utilized to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model, we use the data of sewage treatment process.

  • PDF