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Abstract

To model a numerical problem space under the limi-
fation of available data, we need to extract sparse but
key points from the space and to efficiently approximate
the space with them. This study proposes a sampling
method based on the search process of genetic algorithm
and a space modeling method based on least-squares
approximation using the summation of Gaussian func-
tions. We conducted simulations to evaluate them for
several kinds of problem spaces: DeJong’s, Schaffer’s,
and our original one. We then compared the perfor-
mance between our sampling method and sampling at
regular intervals and that between our modeling method
and modeling using a polynomial. The results showed
that the error between a problem space and its model
was the smallest for the combination of our sampling
and modeling methods for many problem spaces when
the number of samples was considerably small.

1 Introduction

The concern with such learning systems based on the in-
teraction between human and computer has been grow-
ing for the last several years as autonomous symbiotic
robot {5, 6], Web personalization [7], artistic design sup-
port {13], and physical impairment compensation [13].
Although these systems need the feedback of user’s sub-
jective instruction and/or evaluation on their behavior,
that makes the user fatigued and takes much time. The
quantity of subjective data is then severely limited com-
paring with that of objective data obtained with moni-
toring sensors. Consequently, it is difficult for an inter-
active learning system to successfully learn its behavior
based on such small subjective data.

There are some studies to compensate for the lack
of learning data using the model of a problem space
based on response surface method [9] or neural network
: adding the outputs from a model to the real outputs
from a problem space to increase learning data [3, 10, 14]
and visualizing a model to make it possible for humans
to grasp and to support the learning process [4, 8]. How-
ever, most them are specific to applications and do not
systematically examine the accuracy of modeling for sev-
eral kinds of problem spaces. In addition, there are only
a few studies that focus on how to actively pick up im-
portant data points for modeling from a problem space
[4].

Therefore, we discuss efficient sampling and model-
ing methods under the limitation of available data and
examine how effective they are for what kind of prob-
lem spaces. Note, however, that we define the limiting
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conditions for the problem space and its model in this
study, since sampling and modeling methods strongly
depend on them.

Conditions of a Problem Space: (1) The prob-
lem space is nearly static and consists of numerical axes.
(2) We can previously obtain the information on the
axes. While, we cannot do so on the space landscape.
(3) The sampling place on the problem space is not re-
stricted; we can sample optional data points. While, the
number of sampling times is severely restricted due to
sampling cost.

Conditions of a Model: (1) The model simulates
the input-output characteristics of the problem space
and is used to compensate for the lack of data for an
interactive learning system. (2) The model does not
need to be the genuine model of the problem space and
does not need high approximation accuracy if it has the
benefit of the compensation for the lack of data.

Under these limiting conditions, we propose a sam-
pling method based on the search process of Genetic Al-
gorithm (GA), GA-based Sampling, and discuss a model-
ing method based on response surface method [9] using
the summation of Gaussian functions, Gaussian Sum-
mation Approzimation and Polynomial. We think that
these methods will contribute to the applications men-
tioned at the beginning of this chapter [5, 6, 7, 13} when
they are improved enough and established.

In this paper, we explain our proposed methods, GA-
based sampling in Chapter 2 and examine their perfor-
mance in simulations comparing with sampling at reg-
ular intervals and approximation using a polynomial in
Chapter 3. Finally, we conclude this paper and note the
future work in Chapter 4.

2 GA-based Sampling

The simplest sampling is to divide a problem space at
regular intervals and pick up the cross points of.the
dividing lines. We expediently call it Mesh Sampling.
Mesh Sampling has a high possibility to miss important
data points to grasp the landscape of a problem space
such as the apex or the corner points of a large peak
(See the right side of Figure 1).

You may come up with a sampling method based on
experimental design [2] or information gain [12]. It is ef-
ficient to reduce the number of sampling iteration times
at a same coordinate on a problem space. However, we
made a premise that the number of data is so severely
restricted that we cannot get enough data points even
at different coordinates. Therefore, this method is not
fundamentally available in such a case.

We then propose GA-based Sampling shown in the
left side of Figure 1 because of the following features of
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GA: rapid initial convergence and probabilistic multi-
search. On the former feature, conventional studies
on Interactive Evolutionary Computation (IEC) have
shown that individuals rapidly arrive in the neighbor-
hood of an optimal point even if the total number of
individuals is small [13]. That means GA has the abil-
ity to sample data points near by the apex of the largest
peak in a problem space. On the latter feature, the di-
versity of individuals, namely the data point spread on
a problem space, is kept through a search process due
to random initialization, crossover, and mutation. We
then thought that GA can sample the corner points of
the largest peak while it can do the points around local
peaks.
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Figure 1: GA-based Sampling(left) and Mesh Sam-
pling(right)

3 Evaluation Experiment

We cannot clarify the absolute performance of our sam-
pling and modeling methods if we do not use them for
concrete applications. However, we should systemati-
cally examine their effectiveness and generality for vari-
ous problem spaces as the first step of this research. We
then conduct simulations for artificial problem spaces
to evaluate their relative performance comparing with
other simple methods.

3.1 Comparison Object

In this simulation experiment, we compare GA-based
Sampling with Mesh Sampling and Gaussian Summa-
tion Approximation with response surface method using
a polynomial.

3.2 Experimental Conditions

The experiment consists of three procedures: (1) sam-
pling data points from a problem space and modeling it,
(2) calculating the mean square error, which is the sam-
pling and modeling performance measure, between the
model and the problem space for all data points on the
problem space, and (8) comparing the errors among all
combinations of sampling and modeling methods after
conducting (2)(3). We go through these procedures for
several problem spaces and examine for what kinds of
problem spaces GA-based Sampling and Gaussian Sum-
mation Approximation are effective.

The combinations of sampling and modeling meth-
ods were “Mesh and polynomial”, “Mesh and Gaus-
sian”, “GA-based and polynomial”, and “GA-based and
Gaussian”, respectively. We used popular benchmark
search spaces and our original one: DeJong’s functions,
from Fi to Fy [1], Schaffer’s one, Fi[11], and the sum-
mation of three Gaussian functions. It takes an infinite
time to calculate the mean square error for Delong's
functions, F3 and Fy due to their vastness. We modified
them to solve this problem as shown in Table 1.

We should determine the conditions of GA opera-
tion for GA-based Sampling. If we target a real-world
application, it is possible to properly determine GA op-
eration conditions based on the domain knowledge on
the application. However, this simulation experiment
uses artificial problem spaces, and we do not have any
domain knowledge on them. We then previously con-
ducted GA search several times, regarded the result as
pseudo domain knowledge, and determined GA opera-
tion conditions based on it for each problem space.

Here we discuss how to determine the number of total
sample data in simulations. It may be proper to use
relative measure, namely the ratio of sample data size
to problem space size. However, the number of sample
data is absolutely determined in an interactive learning
system due to the iteration limit of human instruction
or evaluation. We then adopted several values within an
absolute range of the number of sample data [13] and
observed modeling performance trend to the absolute
number of sample data and the relative one.

3.3 Results and Discussion

Figure 2 shows some problem spaces, DeJong’s F1, De-
Jong’s F3, and Schaffer’s F3, and Table 2 shows the
experimental results for them. The results for DeJong’s
F; and Fy, and that for our original problem space were
similar to that for DeJong’s F1 and that for Schaffer’s
F,, respectively. We then do not mention the details
for them. The results for Schaffer’s Fy in Table 2 do
not include the results with polynomial approximation,
because a 5-degree polynomial function cannot approx-
imate such a complex space due to its nature.

The numerical values in Table 2 are not the magni-
tude mean square errors between a model and a prob-
lem space, but their proportions to the output range of
a problem space shown in Table 1. We conducted one of
statistical tests, one-side t-test, at 1% significant level on
the error proportion difference for all the combinations
of sampling and modeling methods.

Sampling Performance

The error of GA-based Sampling was significantly lower
than or same as that of Mesh Sampling for all conditions.
There were some cases in which the former was about
one-fifth of the latter. The error difference between GA-
based Sampling and Mesh Sampling was large especially
for smaller sample data size.

Mesh Sampling sometimes missed important data
points for modeling when the number of data was severely
restricted. While, GA-based Sampling could sufficiently
extract them due to its fast convergence and probabilis-
tic search. We then conclude that GA-based Sampling
was effective under the severe limitation of available
data.

The error difference decreased with the increase of
the number of data. Although GA-based Sampling was
better than Mesh Sampling in this experiment, their po-
sitions might become reversed if the sample data were
increased as shown in Figure 3. Because Mesh Sam-
pling becomes able to extract data points sensitively and
evenly, and GA Sampling becomes unable to do so due
to over-convergence.

It depends on not only the size of a problem space
but also its landscape complexity when the performance
reversal appears. However, we think that it is possible
to use the ratio of sample data size to problem space
size as the rough measure of reversal and will make a
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Table 1: Equations of Problem Spaces

Function Definition Input Range & Step | Space Size Output Range
DeJong Fy -7 %7 —511<x; <512 | 1.0x 10° —7864<y<0
AJ),’ = (0.01
DeJong F, —{100(z% — z2)* + (1 — z1)%} —2.047 < x; <2.048 | 1.7 x 10° -3899 <y <0
Az; = 0.001
DeJong F3 -3 il ~511<z; <512 | 1.0 x 10® ~25 <y <30
Az; =0.01
DeJong Fj {37 izt —127<x; <128 | 1.7x107 | —16.11 <y <0.01
+12 X gauss(0,1)} Az; = 0.01
(sin/32_ z2)%_0.5 ) 8
Schaffer Fy 0.5+ —L“L*“‘Wlowooouz,.:, = —81.91 < x; <81.92 | 2.7 x 10 0<y<1
Az; = 0.01
-1
Original | 2% hs exp{—-tﬁl)"‘zi—(ﬂ—‘—)—} ~8.101 < x; <8.192 | 2.7 x 10° 0<y <8892
Az; = 0.001

Fitness Value

Figure 2: Examples of the Problem Spaces : DeJong’s Fi, DeJong’s F;, Schaffer’s F1, and the closeup of Schaffer’s

F

guideline with this measure on what conditions we can
apply GA-based Sampling to.
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Figure 3: Relation between the Performance of GA-
based Sampling and that of Mesh Sampling

Modeling Performance

The error of Gaussian Summation Approximation was
lower than that of polynomial approximation for De-
Jong’s F5 for five function summation. In addition, it
was fundamentally impossible for polynomial approxi-
mation to model Schaffer’s F, which Gaussian Summa-
tion Approximation could model. On the other hand, it
showed the countertrend for DeJong’s Fi, F3, and Fy.
That may be caused by the complexity difference of
problem space landscape. The landscape of DeJong’s
F; and Schaffer’'s F1 was so complex that a polynomial
with low flexibility could not approximate them. While,
the summation of five Gaussian functions had higher
flexibility than that of a polynomial. The landscape of
DelJong’s Fy, F3, and F; were comparatively simple and
did not need high function flexibility. Such cases were
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against Gaussian Summation Approximation with many
function parameters to be adjusted.

It may be better to use polynomial approximation
if we previously know that the landscape of a problem
space is simple. However, many problem spaces in real-
world applications have complex landscape, and there
are many cases in which we cannot obtain the infor-
mation on the landscape. Therefore, we conclude that
it is better to use Gaussian Summation Approximation
consisting of five functions that is applicable to complex
problem spaces.

Here, we conclude the discussions above. We con-
firmed that GA-based Sampling was more effective than
Mesh Sampling for considerably small data and that
Gaussian Summation Approximation was more effec-
tive than polynomial approximation for complex prob-
lem spaces. Therefore, we think that the combination of
GA-based Sampling and Gaussian Summation Approx-
imation is recommendable for a complex problem space
under the severe limitation of available data. Although
the computational time of this combination was longer
than the others, we can say that such time difference is
comparatively slight to the human instruction or evalu-
ation time in operating an interactive learning system.

4 Conclusions and Future Work

This study focused on modeling a problem space un-
der the severe limitation of available data. We proposed
a sampling method based on GA search process, GA-
based Sampling, and a modeling method based on re-
sponse surface method using the summation of Gaussian
functions, Gaussian Summation Approximation.

We conducted a simulation experiment to evaluate
our methods for several problem spaces comparing with



Table 2: Experimental Results for DeJong’s F1 (upper), DeJong’s F2 (middle), and Schaffer’s F1 (lower). Sig. means
the results of one-side t-test. ** means that GA-based Sampling was better than Mesh Sampling at 1% significant
level. — means that there was no significant difference between them.

DelJong’s Fy
Function Polynomial 1 Gaussian Functions | 3 Gaussian Functions | 5 Gaussian Functions
Num. of Data | Sampling | Sig. Sampling Sig. Sampling Sig. Sampling Sig.
Mesh | GA Mesh T GA Mesh T GA Mesh | GA
64 7.50 [ 0.00 | ** | 654 | 2.85 *x 15.87 | 4.74 ** 17.33 | 3.99 *¥
125 0.00 | 0.00 | - 5.27 | 2.77 - 3.72 | 3.17 - 15.20 | 2.55 **
216 0.00 | 0.00 | - 4.60 | 2.77 - 262 | 2.65 - 3.86 | 2.25 *
DelJong’s F»
Function Polynomial 1 Gaussian Functions | 3 Gaussian Functions | 5 Gaussian Functions
Num. of Data Sampling Sig. Sampling Sig. Sampling Sig. Sampling Sig.
Mesh | GA Mesh | GA Mesh | GA Mesh | GA
49 6.25 | 7.18 | — 0.99 | 8.04 ** 5.90 [ 4.53 - 10.11 | 4.04 X
100 6.01 | 653 | - 9.23 | 7.99 - 3.92 | 4.10 - 247 | 3.45 -
169 590 [6.36 ] — 8.87 | 7.95 - 3.65 | 3.75 - 1.75 | 2.76 -
Schaffer’s F1
Function 1 Gaussian Functions | 3 Gaussian Functions | 5 Gaussian Functions
Num. of Data | Sampling Sig. Sampling Sig. Sampling Sig.
Mesh T GA Mesh | GA Mesh | GA
49 2.27 | 2.96 ~ 2.30 | 2.48 - 10.01 | 2.75 -
100 2.37 | 2.73 - 0.76 | 1.66 - 0.61 1.92 -
169 2.29 | 2.73 - 0.93 | 1.32 - 0.97 | 1.36 -

sampling at regular intervals and approximation using a
polynomial. As the results, the error between a problem
space and its model obtained with the combination of
our sampling and modeling methods was smaller than
that of the other combinations for a complex problem
space when the number of data was severely restricted.
We then confirmed the effectiveness of our methods.

‘We are going to continue experiments for more com-
plex problem spaces and to clarify the relation between
the modeling performance and the ratio of sample data
size to problem space size. In addition, we are consid-
ering a new GA-based Sampling using gradient infor-
mation and the application of our methods to problem
space visualization.
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