• Title/Summary/Keyword: Gaussian plume

Search Result 55, Processing Time 0.022 seconds

A Numerical Study for the Air Flow on Complex Terrain (복잡지형의 공기흐름에 대한 수치해석 연구)

  • Park, Mi Sun;Jeong, Hae Sun;Jeong, Hyo Joon;Hwang, Won Tae;Kim, Eun Han;Han, Moon Hee;Kim, Hey Suk
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.70-80
    • /
    • 2014
  • The interpretation on the diffusion of radiation contaminants in air is usually to apply a Gaussian plume equation that obtains normal distributions in stable air flow conditions to draw a conservative conclusion. In this study, a numerical study using computational fluid dynamics methods was performed to interpret the air flow pattern and the diffusion of the radiation contaminants at the Wolseong nuclear power plants, and a more detailed solution can be obtained than the Gaussian plume equation, which is difficult to use to simulate complex terrains. The results show that a significant fluctuation of air flow in the terrain appears in the case of a northwester and southeaster because of the mountain located in the northwest and the sea located in the south-east. The northwesterly air flow shows the most unstable flow in the vertical direction when it passes over the terrain of mountain. The stable southeasterly air flow enters into the nuclear power plant from the sea, but it becomes unstable rapidly because of the interference by the building and the terrain. On the other hand, in the case of a northeaster and southwester, a small interruption of air flow is caused by the terrain and wake behind the buildings of nuclear power plants.

Prediction of radioactivity releases for a Long-Term Station Blackout event in the VVER-1200 nuclear reactor of Bangladesh

  • Shafiqul Islam Faisal ;Md Shafiqul Islam;Md Abdul Malek Soner
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.696-706
    • /
    • 2023
  • Consequences of an anticipated Beyond Design Basis Accident (BDBA) Long-Term Station Blackout (LTSBO) event with complete loss of grid power in the VVER-1200 reactor of Rooppur Nuclear Power Plant (NPP) of Unit-1 are assessed using the RASCAL 4.3 code. This study estimated the released radionuclides, received public radiological dose, and ground surface concentration considering 3 accident scenarios of International Nuclear and Radiological Event Scale (INES) level 7 and two meteorological conditions. Atmospheric transport, dispersion, and deposition processes of released radionuclides are simulated using a straight-line trajectory Gaussian plume model for short distances and a Gaussian puff model for long distances. Total Effective Dose Equivalent (TEDE) to the public within 40 km and radionuclides contribution for three-dose pathways of inhalation, cloudshine, and groundshine owing to airborne releases are evaluated considering with and without passive safety Emergency Core Cooling System (ECCS) in dry (winter) and wet (monsoon) seasons. Source term and their release rates are varied with the functional duration of passive safety ECCS. In three accident scenarios, the TEDE of 10 mSv and above are confined to 8 km and 2 km for the wet and dry seasons, respectively in the downwind direction. The groundshine dose is the most dominating in the wet season while the inhalation dose is in the dry season. Total received doses and surface concentration in the wet season near the plant are higher than those in the dry season due to the deposition effect of rain on the radioactive substances.

A new method to calculate a standard set of finite cloud dose correction factors for the level 3 probabilistic safety assessment of nuclear power plants

  • Gee Man Lee;Woo Sik Jung
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1225-1233
    • /
    • 2024
  • Level 3 probabilistic safety assessment (PSA) is performed to calculate radionuclide concentrations and exposure dose resulting from nuclear power plant accidents. To calculate the external exposure dose from the released radioactive materials, the radionuclide concentrations are multiplied by two factors of dose coefficient and a finite cloud dose correction factor (FCDCF), and the obtained values are summed. This indicates that a standard set of FCDCFs is required for external exposure dose calculations. To calculate a standard set of FCDCFs, the effective distance from the release point to the receptor along the wind direction should be predetermined. The TID-24190 document published in 1968 provides equations to calculate FCDCFs and the resultant standard set of FCDCFs. However, it does not provide any explanation on the effective distance required to calculate the standard set of FCDCFs. In 2021, Sandia National Laboratories (SNLs) proposed a method to predetermine finite effective distances depending on the atmospheric stability classes A to F, which results in six standard sets of FCDCFs. Meanwhile, independently of the SNLs, the authors of this paper discovered that an infinite effective distance assumption is a very reasonable approach to calculate one standard set of FCDCFs, and they implemented it into the multi-unit radiological consequence calculator (MURCC) code, which is a post-processor of the level 3 PSA codes. This paper calculates and compares short- and long-range FCDCFs calculated using the TID-24190, SNLs method, and MURCC method, and explains the strength of the MURCC method over the SNLs method. Although six standard sets of FCDCFs are required by the SNLs method, one standard sets of FCDCFs are sufficient by the MURCC method. Additionally, the use of the MURCC method and its resultant FCDCFs for level 3 PSA was strongly recommended.

Sensitivity Analysis of the Atmospheric Dispersion Modeling through the Condition of Input Variable (입력변수의 조건에 따른 대기확산모델의 민감도 분석)

  • Chung Jin-Do;Kim Jang-Woo;Kim Jung-Tae
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.851-860
    • /
    • 2005
  • In order to how well predict ISCST3(lndustrial Source Complex Short Term version 3) model dispersion of air pollutant at point source, sensitivity was analysed necessary parameters change. ISCST3 model is Gaussian plume model. Model calculation was performed with change of the wind speed, atmospheric stability and mixing height while the wind direction and ambient temperature are fixed. Fixed factors are wind direction as the south wind(l80") and temperature as 298 K(25 "C). Model's sensitivity is analyzed as wind speed, atmospheric stability and mixing height change. Data of stack are input by inner diameter of 2m, stack height of 30m, emission temperature of 40 "C, outlet velocity of 10m/s. On the whole, main factor which affects in atmospheric dispersion is wind speed and atmospheric stability at ISCST3 model. However it is effect of atmospheric stability rather than effect of distance downwind. Factor that exert big influence in determining point of maximum concentration is wind speed. Meanwhile, influence of mixing height is a little or almost not.

A Study on Dispersion Characteristics of Odor from Hanwoo and Dairy Farms (한우 및 젖소농장 발생 악취의 확산특성 연구)

  • Kim, Doo-Hwan;Ha, Duck-Min;Lee, Jae-Young;Kim, Hee-Ho;Song, Jun-Ik
    • Journal of Animal Environmental Science
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • This study was conducted to investigate the dispersion prediction of odor from Hanwoo and dairy farms. Gaussian Plume model used in considering of farm size, wind velocity, atmospheric stability and threshold odor unit to prediction of odor dispersion based on the survey on current state of odor emission and control from 9 site of Hanwoo and 9 site of dairy farms. Farm size, wind velocity and atmospheric stability were affected the distance of odor dispersion, showed longer distance in cases of large farm, low wind velocity and stable atmospheric condition. We will suggestion the adjusted distance of odor dispersion according to farm size was estimated to 50~100 m in Hanwoo farm and 50~150 m in dairy farm when apply the 3OU, 5 m/s wind velocity and stable atmospheric condition.

Aspects of Urban Heat Island and Its's Effect on Air Pollution Concentration in Chunchon Area (춘천지역 도시열섬의 특성과 대기질에 미치는 영향)

  • 이종범;김용국;김태우
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.303-309
    • /
    • 1993
  • An observational study of urban heat island was carried out using field data obatined during 6 days in May and August 1992 in Chunchon(population size 180.000). Air temperature was measured at 64 points along two sampling ruoutes by themisters attached to cars. Both routes cover urban and rural area and across the cneter of urban area. Continuous observation of air sonde was perfomed to clarify heights of nocturnal boundary layer(NBL) at the center of urban area. Surface meteorological observations were performed at both urban and rural sites. This study showed that heat island phenomena was obviously observed at the urbanized area during the night time with low wind speed. The average NBL heights exteded to about 10 meters, but varied with meteorological conditions. After sunset, the air temperature decreased with time at both sites and cooling rate at the urban site was greater than the rural site. The maximum heat island intensity was 7.5$^{\circ}$C at 21 LST, May 4. Usingthe two meteorological data sets obtained from urban and rural sites, the air pollutant concentration was calculated by Gaussian plume model which can obtain not only horizontal distribution of concentration but also vertical distribution. The result indicated that the concentration resulted from urban meteorological data set was lower than that from rural meteorological data set. It was also calculated that the air pollutant extended to higher level in urban meteorological data set than that in rural meteorological data set.

  • PDF

A Study on Dispersion Characteristics of Odor from Swine Farms (양돈장 발생 악취의 확산특성 연구)

  • Kim, Doo-Hwan;Ha, Duck-Min;Lee, In-Bok;Choi, Dong-Yun;Song, Jun-Ik
    • Journal of Animal Environmental Science
    • /
    • v.20 no.2
    • /
    • pp.41-48
    • /
    • 2014
  • This study was conducted to investigate the dispersion prediction of odor from swine farms in Korea. Gaussian Plume model used in considering of farm size, wind velocity, atmospheric stability and threshold odor unit to prediction of odor dispersion based on the survey on current state of odor emission and control from 48 site of swine farms. Farm size, wind velocity and atmospheric stability were affected the distance of odor dispersion, showed longer distance in cases of large farm, low wind velocity and stable atmospheric condition. We will suggestion the adjusted distance of odor dispersion according to farm size was estimated to 180 m in small farm and 320 m in large farm when apply the 3 OU, 5 m/s wind velocity and stable atmospheric condition.

RADAP-A PC Program for Real-Time Prediction of Doses Following a Nuclear Accident (RADAP-원자력 사고후 실시간 선량 예측용 PC 전산프로그램)

  • Park, Jae-Won;Kang, Chang-Sun
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.102-109
    • /
    • 1993
  • A PC-computer program RADAP has been developed in this study to perform a quick real-time analysis of dose assessment following an accident in a nuclear facility. RADAP uses an interactive LKagrangian puff model in simulating the transport and diffusion of radioactive plume in the atmosphere. For real-time analysis, RADAP treats one or multiple puffs of ground-level releases, simultaneously. It is assumed to maintain a Gaussian distribution within the puff and the diffusion coefficients are computed using the USNRC's normal sigma curve method. The program, however, does not consider the spatial variations but the temporal variations in wind conditions. Whole body and thyroid doses for 3$\times$31 grid are directed to output files, and they are also displayed through computer graphics on VGA or EGA color monitor. The results show that RADAP can be an excellent tool for quick estimation of accidental doses.

  • PDF

Recommended Evacuation Distance for Offsite Risk Assessment of Ammonia Release Scenarios (냉동, 냉장 시스템에서 NH3 누출 사고 시 장외영향평가를 위한 피해범위 및 대피거리 산정에 관한 연구)

  • Park, Sangwook;Jung, Seungho
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.156-161
    • /
    • 2016
  • An accident of an ammonia tank pipeline at a storage plant resulted in one death and three injuries in 2014. Many accidents including toxic gas releases and explosions occur in the freezing and refrigerating systems using ammonia. Especially, the consequence can be substantial due to that the large amount of ammonia is usually being used in the refrigeration systems. In this study, offsite consequence analysis has been investigated when ammonia leaks outdoors from large storages. Both flammable and toxic effects are under consideration to calculate the affected area using simulation programs for consequence analysis. ERPG-2 concentration (150 ppm) has been selected to calculate the evacuation distance out of various release scenarios for their dispersions in day or night. For offsite residential, the impact area by flammability is much smaller than that by toxicity. The methodology consists of two steps as followings; 1. Calculation for discharge rates of accidental release scenarios. 2. Dispersion simulation using the discharge rate for different conditions. This proactive prediction for accidental releases of ammonia would help emergency teams act as quick as they can.

The Assessment of The Collective Dose Resulting from Airborne Releases of Radionuclides (방사성핵종(放射性核種)의 대기방출(大氣放出)로 인한 집단선량(集團線量) 평가(評價))

  • Lee, Tea-Young;Yook, Chong-Chul;Lee, Byung-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.8 no.2
    • /
    • pp.41-46
    • /
    • 1983
  • Annual collective dose within 50 miles radius of Ko-ri I reactor site due to normal airborne effluent discharges in 1979 has been estimated by AIRDOS-EPA computer code. Gaussian plume equation is used for estimation of both horizontal and vertical dispersion of radionuclide release into the atmosphere. Also, radionuclide concentrations in meat, milk, and fresh produce consumed by near-by population are estimated by coupling the output of the atmospheric transport models with the USNRC terrestrial food chain models. Annual collective doses are found to be $3.348{\times}10^{-1}$ whole body manrem and 84.95 thyroid manrem. Whole body manrem calculated by AIRDOS-EPA computer code do not differ greatly from that calculated by GASPAR computer code, but value for thyroid manrem have been estimated lower than that calculated by GASPAR computer code.

  • PDF