It is essential to estimate the vehicle localization for an autonomous safety driving. In particular, since LIDAR provides precise scan data, many studies carried out to estimate the vehicle localization using LIDAR and pre-generated map. The road marking always exists on the road because of provides driving information. Therefore, it is often used for map information. In this paper, we propose to generate the Gaussian mixture map based on road-marking information and localization method using this map. Generally, the probability distributions map stores the single Gaussian distribution for each grid. However, single resolution probability distributions map cannot express complex shapes when grid resolution is large. In addition, when grid resolution is small, map size is bigger and process time is longer. Therefore, it is difficult to apply the road marking. On the other hand, Gaussian mixture distribution can effectively express the road marking by several probability distributions. In this paper, we generate Gaussian mixture map and perform vehicle localization using Gaussian mixture map. Localization performance is analyzed through the experimental result.
IEIE Transactions on Smart Processing and Computing
/
v.2
no.6
/
pp.332-338
/
2013
We propose a method for target detection in Infrared images. In order to effectively detect a target region from an image with noises and clutters, spatial information of the target is first considered by analyzing pixel distributions of projections in horizontal and vertical directions. These distributions are represented as Gaussian distributions, and Gaussian Mixture Model is created from these distributions in order to find thresholding points of the target region. Through analyzing the calculated Gaussian Mixture Model, the target region is detected by eliminating various backgrounds such as noises and clutters. This is performed by using a novel thresholding method which can effectively detect the target region. As experimental results, the proposed method has achieved better performance than existing methods.
Communications for Statistical Applications and Methods
/
v.25
no.6
/
pp.633-645
/
2018
Gaussian error distributions are a common choice in traditional regression models for the maximum likelihood (ML) method. However, this distributional assumption is often suspicious especially when the error distribution is skewed or has heavy tails. In both cases, the ML method under normality could break down or lose efficiency. In this paper, we consider the log-concave and Gaussian scale mixture distributions for error distributions. For the log-concave errors, we propose to use a smoothed maximum likelihood estimator for stable and faster computation. Based on this, we perform comparative simulation studies to see the performance of coefficient estimates under normal, Gaussian scale mixture, and log-concave errors. In addition, we also consider real data analysis using Stack loss plant data and Korean labor and income panel data.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2009.01a
/
pp.246-249
/
2009
Due to the additive white Gaussian noise (AWGN), images are often corrupted. In recent days, Bayesian estimation techniques to recover noisy images in the wavelet domain have been studied. The probability density function (PDF) of an image in wavelet domain can be described using highly-sharp head and long-tailed shapes. If a priori probability density function having the above properties would be applied well adaptively, better results could be obtained. There were some frequently proposed PDFs such as Gaussian, Laplace distributions, and so on. These functions model the wavelet coefficients satisfactorily and have its own of characteristics. In this paper, mixture distributions of Gaussian and Laplace distribution are proposed, which attempt to corporate these distributions' merits. Such mixture model will be used to remove the noise in images by adopting Maximum a Posteriori (MAP) estimation method. With respect to visual quality, numerical performance and computational complexity, the proposed technique gained better results.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.28
no.3
/
pp.171-176
/
2016
The distribution shapes of air and water temperatures are basic and essential information, which determine the frequency patterns of their occurrence. It is also very useful to understand the changes in long-term air and water temperatures with respect to climate change. The typical distribution shapes of air and water temperatures cannot be well fitted using widely used/accepted normal distributions because their shapes show multimodal distributions. In this study, Gaussian mixture distributions and kernel distributions are suggested as the more suitable models to fit their distribution shapes. Based on the results, the tail shape exhibits different patterns. The tail is long in higher temperature regions of water temperature distribution and in lower temperature regions of air temperature distribution. These types of shape comparisons can be useful to identify the patterns of long-term air and water temperature changes and the relationship between air and water temperatures. It is nearly impossible to identify change patterns using only mean-temperatures and normal distributions.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.18
no.2
/
pp.129-142
/
2014
We propose a variational segmentation model based on statistical information of intensities in an image. The model consists of both a local region-based energy and a global region-based energy in order to handle misclassification which happens in a typical statistical variational model with an assumption that an image is a mixture of two Gaussian distributions. We find local ambiguous regions where misclassification might happen due to a small difference between two Gaussian distributions. Based on statistical information restricted to the local ambiguous regions, we design a local region-based energy in order to reduce the misclassification. We suggest an algorithm to avoid the difficulty of the Euler-Lagrange equations of the proposed variational model.
Communications for Statistical Applications and Methods
/
v.28
no.1
/
pp.89-97
/
2021
Due to boundedness and sum constraint, compositional data are often transformed by logratio transformation and their transformed data are put into traditional binary classification or discriminant analysis. However, it may be problematic to directly apply traditional multivariate approaches to the transformed data because class distributions are not Gaussian and Bayes decision boundary are not polynomial on the transformed space. In this study, we propose to use flexible classification approaches to transformed data for compositional data classification. Empirical studies using synthetic and real examples demonstrate that flexible approaches outperform traditional multivariate classification or discriminant analysis.
Seo, Suk-T.;Lee, In-K.;Jeong, Hye-C.;Kwon, Soon-H.
Journal of the Korean Institute of Intelligent Systems
/
v.17
no.6
/
pp.725-730
/
2007
Gray-level histogram-based threshold selection methods such as Otsu's method, Huang and Wang's method, and etc. have been widely used for the threshold selection in image processing. They are simple and effective, but take too much time to determine the optimal multilevel threshold values as the number of thresholds are increased. In this paper, we measure correlation between gray-levels by using the Gaussian function and define a Gaussian-type finite mixture distribution which is combination of the Gaussian distribution function with the gray-level histogram, and propose a fast and effective threshold selection method using it. We show the effectiveness of the proposed through experimental results applied it to three images and the efficiency though comparison of the computational complexity of the proposed with that of Otsu's method.
A problem of separating signals from noises is considered, when they are randomly mixed in the observation. It is assumed that the noise follows a Gaussian distribution and the signal follows a Gamma distribution, thus the underlying distribution of an observation will be a mixture of Gaussian and Gamma distributions. The parameters of the mixture model will be estimated from the EM algorithm. Then the signals and noises will be classified by a fixed threshold approach based on multiple testing using positive false discovery rate and Bayes error. The proposed method is applied to a real optical emission spectroscopy data for the quantitative analysis of inclusions. A simulation is carried out to compare the performance with the existing method using 3 sigma rule.
The focus in this paper is on obtaining tight, simple algebraic-form bounds and invertible expressions for the average symbol error probability (ASEP) of M-ary phase shift keying (MPSK) in a class of composite fading channels. We employ the mixture gamma (MG) distribution to approximate the signal-to-noise ratio (SNR) distributions of fading models, which include Nakagami-m, Generalized-K ($K_G$), and Nakagami-lognormal fading as specific examples. Our approach involves using the tight upper and lower bounds that we recently derived on the Gaussian Q-function, which can easily be averaged over the general MG distribution. First, algebraic-form upper bounds are derived on the ASEP of MPSK for M > 2, based on the union upper bound on the symbol error probability (SEP) of MPSK in additive white Gaussian noise (AWGN) given by a single Gaussian Q-function. By comparison with the exact ASEP results obtained by numerical integration, we show that these upper bounds are extremely tight for all SNR values of practical interest. These bounds can be employed as accurate approximations that are invertible for high SNR. For the special case of binary phase shift keying (BPSK) (M = 2), where the exact SEP in the AWGN channel is given as one Gaussian Q-function, upper and lower bounds on the exact ASEP are obtained. The bounds can be made arbitrarily tight by adjusting the parameters in our Gaussian bounds. The average of the upper and lower bounds gives a very accurate approximation of the exact ASEP. Moreover, the arbitrarily accurate approximations for all three of the fading models we consider become invertible for reasonably high SNR.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.