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Linear regression under log-concave and Gaussian scale
mixture errors: comparative study
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Abstract

Gaussian error distributions are a common choice in traditional regression models for the maximum like-
lihood (ML) method. However, this distributional assumption is often suspicious especially when the error
distribution is skewed or has heavy tails. In both cases, the ML method under normality could break down or
lose efficiency. In this paper, we consider the log-concave and Gaussian scale mixture distributions for error
distributions. For the log-concave errors, we propose to use a smoothed maximum likelihood estimator for stable
and faster computation. Based on this, we perform comparative simulation studies to see the performance of
coefficient estimates under normal, Gaussian scale mixture, and log-concave errors. In addition, we also consider
real data analysis using Stack loss plant data and Korean labor and income panel data.

Keywords: NPMLE, log-concave, Gaussian scale mixture

1. Introduction

In the traditional regression model y = m(x) + €, there have been significant research efforts to find the
mean function m(x) to give meaningful statistical insight. This is because m(x) itself is the function
of interest while € or the distribution of € is a nuisance factor. When m € M is assumed, where
M is a certain family of mean functions, the estimation of m(x) can be achieved by using either the
least square estimator (LSE) or the maximum likelihood estimator (MLE). The MLE is identical with
the LSE under the normality assumption of ¢; therefore, the common choice for the distribution of
€ is the normal distribution. However, there are few research papers that consider non-normal error
distributions. In most practical applications, the normality assumption seems suitable unless there
exist severe outliers or the error distribution is severely skewed. It is well known that the LSE or MLE
under the normality assumption is very sensitive to outliers. For this, Holland and Welsch (1977)
proposed the M-estimation and there are many subsequent research papers. These basically modified
the object function in order to reduce the effect of outliers; however these are not the MLE.

In the ML framework, if the error distribution is assumed to be a family of heavy tailed distribu-
tions, the MLE of the regression parameters is known to be robust (Lange et al., 1989; Lange and
Sinsheimer, 1993). In this sense, Seo et al., (2017) proposed a family of Gaussian scale mixture dis-
tributions for the error distribution. They showed that the resulting estimator is as robust as many
well-known M-estimators without specifying any tuning parameter. In addition, their estimator is
automatically tuned from normal to any heavy tailed distribution so that the efficiency loss resulting
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from a larger class is minimized. A potential drawback of their method is the inefficiency when the
true error distribution is skewed.

A skewed error distribution may not be a pure interest because there should be a suitable transfor-
mation to make the error distribution symmetric. However, transformation could blur the statistical
inference for the mean function and such transformation is not always available. In addition, in some
cases, the error distribution itself could be of great interest. For example, the quality of Value-at-Risk
estimator in the time series model is severely affected by the quality of the estimated error distribution.

We consider a family of log-concave distributions for the error distribution due to their many at-
tractive features. It contains many well-known parametric distributions such as normal, t, and gamma
distributions. It is also known that marginal distributions, convolutions, and product measures of log-
concave distributions preserves log-concavity, see Dharmadhikari and Joag-Dev (1988). Diimbgen et
al. (2007) showed the consistency for the linear and isotonic regression estimator with log-concave
error distributions. Although they showed some numerical results, there is no rigorous study for the
performance of the method.

In this paper, we investigate the performance of estimators under the normality, log-concavity, and
Gaussian scale mixture with some real data examples. In addition, we propose the use of a smoothed
log-concave distribution to estimate of the regression parameters that can make the computation more
reliable and faster than raw estimators. We also derive a formula for an iterative reweighted least
squares based on the smoothed log-concave density. This paper is organized as follows. In Section 2,
we review some literature related to the continuous Gaussian scale mixture and log-concave densities
with their computational aspects. In Section 3, we propose an estimation method in which the error
distribution is assumed to be log-concave. In Section 4, we also adopt the smoothed log-concave MLE
for the inference of regression parameters. Some numerical studies including real data analysis are
given in Section 5. We then end this paper with some concluding remarks in Section 6.

2. Gaussian scale mixture and log-concave distributions
2.1. Gaussian scale mixture distribution

A family of Gaussian scale mixture densities is given as

Fsm = {f(x; 0) = foo lqﬁ (z)dQ(O'N Q is a probability measure on R*} s 2.1)
0o O g

where ¢(-) is the density of the standard normal distribution and Q is a probability measure defined on
positive real numbers. When Q is discrete with finite support points, f(x; Q) is simply a finite mixture
model. But, Fs,, is a more flexible family than finite mixture models because Q is not restricted to be
finitely discrete. A specific choice of Q results in some well-known distributions. For example, f can
be reduced to the ¢ distribution when Q is a Gamma distribution. Hence, this family is a quite large
class of densities in the sense that it contains most unimodal symmetric distributions.

The advantage of the use of this family is that a smooth density estimator is obtained without any
tuning parameter. If we assume that the error distribution in the regression analysis belongs to this
family, it is known that the MLE of regression parameters is robust to traditional outliers (Seo et al.,
2017). In addition, when there is no outlier, the parameter estimate is almost the same as the ordinary
least square estimator or the MLE based on the normality assumption.

The existence and uniqueness of the MLE of Q is well studied in Lindsay (1983). In addition,
the MLE of Q is discrete with a finite number of support points. The computation of the MLE for Q
in (2.1) is achieved by utilizing the gradient characterization of the mixture likelihood. The gradient
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function of Q is defined as a directional derivative of the log-likelihood at Q toward a degenerate
distribution d; having all mass at s. This gradient function can be represented as

o f(x56)
Dol =) 0y "

If Q is the MLE, Dy(s) should be nonpositive for all s € R* because positive Dy(s*) for a certain
s* > 0 implies that we can increase the likelihood by adding s* to the set of support points of Q.

Based on this observation, the algorithm finds s* such that Dy (s*) > 0 for a given Q. If such s™ is
found, the support of Q is updated by adding s* to the current set of support points in Q. The proba-
bility mass for this new support points are then updated with the expectation and maximization (EM)
algorithm or standard optimization procedures like the Newton-Raphson method. This algorithm is
called vertex direction method; in addition, there are also several relatives such as the vertex exchange
method (Bohning, 1995), the intra simplex direction method (Lesperance and Kalbfleisch, 1992), and
the constrained Newton-method for multiple supports (Wang, 2007).

2.2. Log-concave distribution

A family of log-concave densities can be expressed as
Fre = { f(x) = c,exp p(x)| ¢ is a concave function on R} ,

where ¢, = 1/ f exp ¢(x)dx is the normalizing constant. This family is a subset of the family of
unimodal densities, but it contains most of the well-known parametric distributions. Karlin (1968)
showed that it has subexponential tails and nondecreasing hazard rates. From this richness of ¢, it
can be an important alternative to model potentially skewed unimodal densities.

Walther (2009) showed that the NPMLE of a log-concave density exists and explain how one can
develop an algorithm to estimate the NPMLE. Suppose that X; < X, < --- < X, is ordered random
observations obtained from a population having a log-concave density f(x) € ¥;¢. The log-likelihood
function is then

R A 1 n
69 = [ tog fdf 0 = [ ptodf,i =1 ) 0,
i=1

where [, is the empirical cumulative distribution function (CDF) based on the sample. Since f itself
is a density, we have to maximize £(¢) with the constraint f exp ¢(x)dx = 1 over all concave functions
. Under this constraint, maximizing £(¢) is equivalent to maximizing

1 n
66 = 5 00 - [ expuas,
i=1

see Silverman (1982, Theorem 3.1). It was proven that the NPMLE &, uniquely exists and is piecewise
linear on [X;, X,,] with the set of knots contained in {Xi,..., X,}, and $, = —o0 on R\ [X}, X,,], see
Walther (2002) or Pal et al. (2007).

That is, ¢, should be a concave piecewise linear function on [Xj, X,] with the knots S ,(¢,) =
{re X1, X, : @,(t-) # @,+)} U Xy, X}, where @),(—) and @, (1+) are the left and right derivatives
of ¢, at ¢, respectively. Since a piecewise linear function can be drawn by connecting the points at
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each knot, the maximization of the log-likelihood function £; can be solved by finding the vector
@ = {@n(x1), ..., Pn(x,)} instead of finding the function @, directly. Since ¢ should be concave and
piecewise linear, the estimation problem can be reduced to

@ = argmax £ (¢),
pekK

where

7(={¢eR":90i_‘°i" > Pl " @i f0ri=2,...,n—1}.
Xi = Xij-1 Xit1 — Xi

That is, we can turn our estimation problem into a linearly constrained optimization problem. There
are several algorithms to solve this linearly constrained optimization problem such as the Iterative
Convex Minorant Algorithm (ICMA) and the active set algorithm. It was shown that the active set
algorithm is generally more efficient than other existing algorithms, see Rufibach (2007).

3. Application to linear regression
In the linear regression model,
Yi=x/B+e&, fori=1,...,n,

where x; = (1, x;1, X2, . . .,xi,,)T and B = (Bo,B1,.-- ,ﬂl,)T, if we assume that ¢’s are independent
normal random variables with mean zero and variance o2, it is known that the MLE of B is the same
as the ordinary least square estimator. Instead of the normality assumption, we suppose that €;’s are a
random sample from a population having a density contained in F¢. That is, we adopt the method-
ology to estimate S8 under the assumption that the distribution of ¢; is a log-concave distribution. The
estimator of (¢, B) is then the maximizer of the log-likelihood function

n

G(p.B) = % Delvi-x'8)- f exp ¢(x)dx.

i=1

There is no direct way to find the maximizers ¢ and B simultaneously. For this, we reform the
idea of an alternating algorithm which was introduced in Diimbgen et al. (2011, Section 3.3). An
alternating algorithm is as follows. First, it computes the log-concave MLE ¢© for the residuals
vi — xiT,B(O), i = 1,...,n with any initial parameter B that satisfies 2 i - xiT,B(O)) = 0 such as
the ordinary least square estimator. And it proceeds the following steps for k > 1 iteratively until it
converges:

(a) Determine

n

(k) k-1 k-1

B earg;nax E ¢ )(y,-—xiTﬁ( )).
i=1

Kz B &) _ k)
0 =¥ >

(b) Adjust the parameter B(k) to make the sum of the residuals zero. That is, replace 3, in

By 3 . (K . ~(k
B, BY) with ﬁg‘) - c® where ¢® =nt 31 (y; - xiTﬂ( ), and set this adjusted B to g%

(c) Determine

4 i=1

1 n
* _ Z N OA dxy .
@ argmaX{nZsO(y, X; B ) f exp ¢(x) x}
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In (a), if o*=V is known, B* can be obtained using the general-purpose optimizer function optimin R
(Diimbgen et al., 2011). This function was found to be fast and reliable enough for their first research.
However, it is not stable for estimating regression coefficients in multiple linear regression, and the
efficiency of the algorithm becomes poor when the error distribution is severely heavy-tailed or highly
skewed. In addition, when the number of covariates are very large, optim() function often returns
an error due to a nonsmooth objective function. For this reason, we suggest a more reliable algorithm
that produces an iterative reweighted least square expression in Section 4. Once B is obtained, the
maximization problem in step (c) can be solved efficiently by an active set algorithm. We use the
implementation in the contributed package 1logcondens by Rufibach and Diimbgen (2010) in R.

4. Estimation of regression coefficients with smoothed log-concave density

As mentioned in Section 3, a characteristic feature of the MLEs of log-concave densities is that they
are not smooth and not differentiable at each knot. Diimbgen et al. (2011) provided an idea how to
apply log-concave density estimation to regression analysis; however, they did not provide a specific
way to maximize the likelihood function in a given situation of an error distribution. We here propose a
method to find the MLE of regression parameters using a smoothed version of the log-concave density
estimator which is smooth and differentiable anywhere. Chen and Samworth (2013) investigated a
smoothed version of the log-concave MLE given by

Fa(x) = Fu(x) = (),

where f,(-) is the obtained log-concave MLE and ¢;,(- ) is the Gaussian kernel with tuning parameter
h. Note that f, is a log-concave density as long as f, is a log-concave density, see Dharmadhikari
and Joag-Dev (1988, Theorem 2.8). According to Diimbgen et al. (2011, Remark 2.3), f,, -) under-
estimates the variance of the true density. Based on this observation, Chen and Samworth (2013)
proposed h = & — &, where 6?* = f(x - )"c)zf,,(x)dx and 2 = 1/(n—-1) 2 (g = %)? so that the
estimator has an exact size of the variance. From the piecewise linear property of ¢,, we can write @,
as

c—1

@n(x) = Z (@i + a0 Il < x <wi],

i=1

for some real numbers ag, @y;, and l; < u;, i = 1,...,c—1. This ¢,(x) can be obtained from the ICMA
or the active set algorithm as described in Section 2.2. Then, a smoothed version of the log-concave
MLE can be explicitly computed as

e w0 gy

o0 = f exp Bu(l) \/1_}1
c—1
—Zf exp(a/o,+a1,t)\/_

c—1
h 2 )( (u,-—x—hcm) (f,-—x—ha],-))
= explax + zaj; + @y || P| ——— | - O ———]], 4.1)
Zl ( A Vi Vi

where @(:) is the CDF of the standard normal density.
Now, for our regression problem, we first compute the residuals & = y; — x; 8 for given . Based
on €,..., &, we can compute the smoothed MLE of the error distribution f,(¢) as in (4.1). With this

e gy
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estimated f;(¢), the log-likelihood function £,(8) can be defined as £,(8) = *, log Ffulyi— x;B). The
maximizer of £,() can be then obtained by the Newton-Raphson algorithm. The one-step Newton-

Raphson update can be written as

0 (6)

B =g - o (ﬂa—l))’

where

Py S (i = xTB)

op i=1 K :L(yi - XlTﬂ) ’
PLxy (B0 XIB) (= XTB) - Fi i XTB)
aﬂz i=1 - f:, (yi - X;rﬂ)z
Further, if we denote
"y, — xT
W, = diag(ay,...,a,), where a; = f(yl 5 'B)
n (y: - X,Tﬁ)

and
Fo i = x7B) 77 (v =X B) - F2 (v - x7B)”
fn (yi - X;ﬂ)z

W, = diag(by,...,b,), where b; =

>

B can be rephrased as
o _ (yT -l (—1)
BY = (XTWX) X7 (WXxBV - W), (4.2)

which is the form of iterative reweighted least squares.
We summarize the above as:

1. For given f8, compute & = y; — xlTﬁ
. Compute f,(¢) based on &, i,...,n by using (4.1).

. For given f,, compute B by using (4.2).

A~ LN

. Repeat (1)—(3) until a stopping rule is satisfied.

5. Numerical examples
5.1. Simulations

In this section, we conduct some Monte Carlo simulation studies to see the performance of two dif-
ferent methods. We generate 200 simulated samples from the model Y; = By + B1x1; + B2x2i + €. In
here, x; and x,; are independently generated from B(1,0.5) and N(O, 1) respectively fori = 1,...,n.
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Table 1: Empirical MSE x 100 (empirical bias x 100) for n = 250 and 500

n Error Method Bo B B2
OLS 0.81 (1.74) 1.74 (-1.41) 0.39 (-0.24)
@ SMMLE 0.82 (1.66) 1.84 (-1.26) 0.40 (-0.27)
LCMLE 0.85 (1.55) 2.00 (-1.03) 0.42 (-0.27)
OLS 0.77 (0.28) 1.72 (-0.94) 0.40 (-0.16)
250 I SMMLE 0.71 (0.21) 1.30 (-0.80) 0.28 (-0.02)
LCMLE 0.71 (0.16) 1.40 (-0.72) 0.30 (-0.11)
OLS 0.76 (-0.01) 1.49 (-0.12) 0.35(0.44)
(11I) SMMLE 0.67 (0.07) 1.21 (-0.23) 0.26 (0.39)
LCMLE 0.51 (0.30) 0.50 (-0.74) 0.11 (0.22)
OLS 0.34 (-0.19) 0.81 (0.40) 0.19 (-0.83)
(0] SMMLE 0.35 (-0.18) 0.84 (0.38) 0.19 (-0.72)
LCMLE 0.35(-0.11) 0.88 (0.25) 0.21 (-0.87)
OLS 0.40 (0.20) 0.69 (0.13) 0.18 (-0.02)
500 I SMMLE 0.33 (0.31) 0.54 (-0.11) 0.13 (0.10)
LCMLE 0.34 (0.27) 0.55 (-0.02) 0.14 (0.07)
OLS 0.40 (0.49) 0.83 (-0.54) 0.21 (0.46)
II) SMMLE 0.34 (0.62) 0.67 (-0.81) 0.14 (0.49)
LCMLE 0.27 (0.51) 0.28 (-0.56) 0.06 (0.22)

MSE = mean squared error; OLS = Ordinary least square; SMMLE = smoothed MLE; LCMLE = log-concave MLE;
MLE = maximum likelihood estimator.

The true (By,B1,/52) is set to be (2, 1, 1). To investigate how the estimates are changed over different
error distributions, we consider (I) N(0, 1), (II) (1/ \/E)m, and (III) (1/ \/§)(Xﬁ —4). For each error
distribution, Table 1 shows empirical mean squared error (MSE) and empirical bias for different true
error distributions and estimation methods for sample sizes n = 250 and n = 500 based on 200 repli-
cations. Ordinary least square (OLS), smoothed MLE (SMMLE), and log-concave MLE (LCMLE)
represent the ordinary least square estimator, the MLE under the Gaussian scale mixture error, and
the MLE under the log-concave error, respectively. All estimators are obtained using R program. For
SMMLE, both the initial value of (8y,(1,82) and the initial distribution of ¢; are obtained from the
OLS estimation. For LCMLE, the OLS estimator is used for the initial value of (8y,31,02), but the
initial distribution of ¢; is re-estimated from its corresponding residuals.

When the true error distribution is N(0, 1), although there is no significant difference among the
three estimators, OLS has the best performance followed by SMMLE. This is natural because the
assumed classes of error distributions contain the normal distributions and the size of the class of
the normal distributions, which produces OLS, is the smallest. For ¢ case, OLS breaks down while
other methods still give reasonable estimators, and SMMLE shows the best performance. For y?
case, i.e., skewed distribution case, both OLS and SMMLE break down, but LCMLE gives reasonable
estimators. In addition to parameter estimates, we also provide estimated error distributions. For this,
we generate one simulated sample with size n = 500 for each error distributions (I)—(III) and apply
both SMMLE and LCMLE. Figure 1 shows estimated error distributions along with the probability
histogram of simulated errors for normal, ¢, and y? errors. In this figure, the light solid line represents
the true error probability density function and the dashed line shows the estimated error density based
on SMMLE. The thick solid line represents the estimated error density based on LCMLE. Estimated
distributions from both SMMLE and LCMLE are close to the true distribution when the true error
distribution is the normal or student’s t. When the true error distribution is Xz’ LCMLE produces a
reasonable error distribution while the estimated error distribution based on SMMLE shows a severe
bias.
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Figure 1: Estimated error densities based on one simulated sample of size n = 500 for (I)—(III).

5.2. Real data example

For the first real data example, we consider Stack Loss Plant data (Brownlee, 1960). This dataset has
been used in many robust regression literature because it has some severe outliers. Bellio and Ventura
(2005) showed that observations 1, 3, 4, and 21 are those outliers. The dataset contains four variables
(Air Flow, Water Temp, Acid Conc, and Stack Loss). For this dataset, we consider a linear regression
model using Stack Loss variable as a response and other variables as covariates.

For model fitting, we use OLS, SMMLE, and LCMLE. Tables 2 and 3 show the estimated re-
gression coefficients and the corresponding standard errors in the parentheses with the data excluding
outliers and the original data, respectively. The standard errors of SMMLE and LCMLE were ob-
tained by the bootstrap method. As it is known that OLS is very sensitive to outliers, OLS shows
large differences between estimated parameters for each case. LCMLE also shows large differences
in the regression parameters. Unlike SMMLE, LCMLE is not so robust to severe outliers with a small
sample. Especially when the outliers are highly skewed, LCMLE also becomes skewed and this re-
sults in non-robust regression parameter estimates. Figure 2 shows the histograms of residuals and the
corresponding estimated error distributions for each method. In this figure, the solid line represents
the estimated error distribution from the original data and the dashed line shows the estimated error
distribution from Stack Loss Plant data without outliers. Both OLS and LCMLE show large differ-
ences between estimated distributions from each data. However, SMMLE shows small difference.
That is, outliers have a great influence on the estimation of the parameters and distribution in OLS
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Table 2: Estimated parameters and standard errors for the Stack Loss Plant data excluding outliers
Method Bo Bi B2 B3
OLS —37.6525 (4.7321) 0.7977 (0.0674) 0.5773 (0.1660) —0.0671 (0.0616)

SMMLE —37.5401 (5.2553) 0.8055 (0.1006) 0.5558 (0.1970) —-0.0682 (0.0807)

LCMLE —39.0334 (5.1879) 0.7958 (0.0993) 0.6017 (0.1819) —0.0555 (0.0734)
OLS = Ordinary least square; SMMLE = smoothed MLE; LCMLE = log-concave MLE; MLE = maximum likelihood
estimator.

Table 3: Estimated parameters and standard errors for the Stack Loss Plant data including outliers

Method Bo Bi B2 B3
OLS —39.9197 (11.8960) 0.7156 (0.1349) 1.2953 (0.3680) —0.1521 (0.1563)
SMMLE —36.0085 (9.7895) 0.8416 (0.2043) 0.4838 (0.6130) —-0.0872 (0.1433)
LCMLE —37.5101 (10.7084) 0.6759 (0.1879) 1.3638 (0.5470) —0.1690 (0.1404)
OLS = Ordinary least square; SMMLE = smoothed MLE; LCMLE = log-concave MLE; MLE = maximum likelihood
estimator.
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Figure 2: The histograms of residuals and the corresponding estimated error densities. OLS = Ordinary least
square; SMMLE = smoothed MLE; LCMLE = log-concave MLE; MLE = maximum likelihood estimator.

and LCMLE.
Second, we consider 19th KLIPS (Korean Labor & Income Panel Study) Data. KLIPS is a longi-

tudinal survey of the labor market/income activities of households and individuals residing in urban
areas. With KLIPS data, we try to analyze the effect of personal properties on income. For this, we



642 Sunyul Kim, Byungtae Seo

1500
800 1000
I

1000
600
I

Frequency
Frequency

400
I

500
I

200
I

r T T T 1 r T T T 1
0 10000 20000 30000 40000 2 4 6 8 10

Income Log-transformed income

Figure 3: The histograms of income and log-transformed income variable in the 19th KLIPS data.

Table 4: Estimated parameters and standard errors for 19th KLIPS data

Method OLS SMMLE LCMLE
Bo 6.9362 (0.0629) 7.0528 (0.0879) 7.0013 (0.0551)
Bi —-0.5377 (0.0171) —0.5083 (0.0192) —0.4827 (0.0141)
aj 0.5938 (0.0331) 0.4451 (0.0504) 0.3417 (0.0262)
s 0.7220 (0.0324) 0.5695 (0.0516) 0.4903 (0.0263)
a3 0.7051 (0.0324) 0.5388 (0.0527) 0.5049 (0.0308)
a4 0.1368 (0.0371) 0.0358 (0.0556) 0.0605 (0.0333)
B2 0.1750 (0.0073) 0.1716 (0.0091) 0.1840 (0.0068)
B3 0.0590 (0.0166) 0.0418 (0.0155) 0.0279 (0.0128)

OLS = Ordinary least square; SMMLE = smoothed MLE; LCMLE = log-concave MLE; MLE = maximum likelihood
estimator.

consider a linear regression model using pre-tax annual income as a response and gender, age, edu-
cational background, and residence area as covariates. Covariates are selected by referring to various
research papers on determinants of income. The age variable was divided into five categories: under
30, between 30 and 40, between 40 and 50, between 50 and 60, and over 60. That is, there are 7
independent variables including 4 dummy variables.

Figure 3 shows that the distribution of income in the KLIPS data is severely skewed as it is known
that the income distribution tends to be skewed. The left is the histogram of the original income
and the right is the histogram of log-transformed income. We use the log-transformed income for our
model as we do generally when the data is skewed. Table 4 shows the estimated regression coefficients
and the corresponding standard errors in the parentheses. We can check that the standard errors of
LCMLE are smaller than those of any other method. Figure 4 shows the histograms of residuals and
the corresponding estimated error distributions for each method. In OLS, there is a large gab between
the estimated error distribution and the histogram of residuals. In SMMLE, the gap is reduced, but it
still shows some difference. However, in LCMLE, they match very well. Table 5 shows 95% bootstrap
confidence intervals for the parameters which are calculated based on each method. We can also see
that the confidence intervals obtained from LCMLE tend to be shorter than the others.

6. Concluding remarks

A regression model based on the Gaussian scale mixture error has a comparable or superior perfor-
mance to other robust regression estimators. One potential limitation of this model is that the estima-
tion may be unreliable when the true error distribution is not symmetric. The family of log-concave



Maximum likelihood estimation for linear regression with log-concave distributions 643

08
1

06
I

Density
04

Density
04

0.2

[/

00

T T T 1 T T T 1
-4 2 0 2 -4 -2 0 2

residuals residuals

(a) OLS (b) SMMLE

07
|
s S
—

04 05 06
I 1
——

Density
03

02

01

00
L

T T T 1
-4 -2 0 2

residuals
(c) LCMLE

Figure 4: The histograms of residuals and the corresponding estimated error densities.

Table 5: 95% confidence intervals for estimated parameters for 19th KLIPS data

OLS SMMLE LCMLE

2.5 % 97.5 % 2.5 % 97.5 % 2.5 % 97.5 %
Bo 6.8130 7.0595 6.8241 7.1792 6.8942 7.1073
Bi -0.5713 —-0.5041 -0.5370 —-0.4592 —-0.5095 —-0.4570
aj 0.5290 0.6586 0.3224 0.5354 0.2918 0.3918
s 0.6585 0.7855 0.4522 0.6619 0.4386 0.5404
a3 0.6383 0.7719 0.4217 0.6372 0.4415 0.5619
s 0.0640 0.2097 -0.0799 0.1373 —-0.0031 0.1256
B2 0.1606 0.1893 0.1629 0.1979 0.1712 0.1971
B3 0.0265 0.0916 0.0079 0.0684 0.0043 0.0552

OLS = Ordinary least square; SMMLE = smoothed MLE; LCMLE = log-concave MLE; MLE = maximum likelihood
estimator.

densities contains many skewed distributions so that the regression model based on log-concave errors
is quite flexible to estimate regression parameters even though the true error distribution is skewed.
In this paper, we study the estimation of regression parameters and error distributions with Gaussian
scale mixture densities and log-concave densities, as well as compare them by using some numerical
examples.
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The estimation with log-concave densities can be conducted by a three-step alternating algorithm.
In the first step, we proposed the methodology for finding the MLEs for regression parameters with
a smoothed version of the log-concave MLE, which produces an iterative reweighted least square
expression. We find that the proposed method is stable and efficient to estimate regression coefficients
in multiple linear regression even with a large sample size.

Simulation results show that the estimation with log-concave densities is as good as other methods
in normal and heavy-tailed cases, and it has a remarkable performance in a skewed case. However,
the estimator under log-concave errors is sensitive to outliers when there are severe outliers in a small
sample. It seems that our proposed method could still be robust when the outliers occur in a symmetric
fashion. However, when there are only extremely large (or small) outliers, the proposed method
produces highly skewed log-concave density estimators. This would be the reason why the proposed
estimator is not robust in general. On the other hand, since the SMMLE assumes that the error
distribution is symmetric, the density estimate is not so heavily affected by skewed outliers regardless
of the existence of large (or small) outliers. In this case, the SMMLE produces a symmetric but heavy
tailed density estimator. This also explains why the proposed method works well in simulation studies
even though it is not robust for the the real data analysis with a small sample size in which some large
outliers exist.
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