• Title/Summary/Keyword: Gaussian Kernel

검색결과 137건 처리시간 0.022초

INSTABILITY OF THE BETTI SEQUENCE FOR PERSISTENT HOMOLOGY AND A STABILIZED VERSION OF THE BETTI SEQUENCE

  • JOHNSON, MEGAN;JUNG, JAE-HUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권4호
    • /
    • pp.296-311
    • /
    • 2021
  • Topological Data Analysis (TDA), a relatively new field of data analysis, has proved very useful in a variety of applications. The main persistence tool from TDA is persistent homology in which data structure is examined at many scales. Representations of persistent homology include persistence barcodes and persistence diagrams, both of which are not straightforward to reconcile with traditional machine learning algorithms as they are sets of intervals or multisets. The problem of faithfully representing barcodes and persistent diagrams has been pursued along two main avenues: kernel methods and vectorizations. One vectorization is the Betti sequence, or Betti curve, derived from the persistence barcode. While the Betti sequence has been used in classification problems in various applications, to our knowledge, the stability of the sequence has never before been discussed. In this paper we show that the Betti sequence is unstable under the 1-Wasserstein metric with regards to small perturbations in the barcode from which it is calculated. In addition, we propose a novel stabilized version of the Betti sequence based on the Gaussian smoothing seen in the Stable Persistence Bag of Words for persistent homology. We then introduce the normalized cumulative Betti sequence and provide numerical examples that support the main statement of the paper.

벤츄리 노즐 출구 형상과 작동 조건에 따른 캐비테이션 기포 발생 특성 연구 (Generation of emulsions due to the impact of surfactant-laden droplet on a viscous oil layer on water)

  • 오창훈;김준현;성재용
    • 한국가시화정보학회지
    • /
    • 제21권1호
    • /
    • pp.94-102
    • /
    • 2023
  • Three design parameters were considered in this study: outlet nozzle angle (30°, 60°, 80°), neck length (1 mm, 3 mm), and flow rate (0.5, 0.6, 0.7, 0.8 lpm). A neck diameter of 0.5 mm induced cavitation flow at a venture nozzle. A secondary transparent chamber was connected after ejection to increase bubble duration and shape visibility. The bubble size was estimated using a Gaussian kernel function to identify bubbles in the acquired images. Data on bubble size were used to obtain Sauter's mean diameter and probability density function to obtain specific bubble state conditions. The degree of bubble generation according to the bubble size was compared for each design variable. The bubble diameter increased as the flow rate increased. The frequency of bubble generation was highest around 20 ㎛. With the same neck length, the smaller the CV number, the larger the average bubble diameter. It is possible to increase the generation frequency of smaller bubbles by the cavitation method by changing the magnification angle and length of the neck. However, if the flow rate is too large, the average bubble diameter tends to increase, so an appropriate flow rate should be selected.

분류 및 회귀문제에서의 분류 성능과 정확도를 동시에 향상시키기 위한 새로운 바이어스 스케줄링 방법 (A New Bias Scheduling Method for Improving Both Classification Performance and Precision on the Classification and Regression Problems)

  • 김은미;박성미;김광희;이배호
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권11호
    • /
    • pp.1021-1028
    • /
    • 2005
  • 분류 및 회계문제에서의 일반적인 해법은, 현실 세계에서 얻은 정보를 행렬로 사상하거나, 이진정보로 변형하는 등 주어진 데이타의 가공과 이를 이용한 학습에서 찾을 수 있다. 본 논문은 현실세계에 존재하는 순수한 데이타를 근원공간이라 칭하며, 근원 데이타가 커널에 의해 사상된 행렬을 이원공간이라 한다. 근원공간 혹은 이원공간에서의 분류문제는 그 역이 존재하는 문제 즉, 완전해가 존재하는 문제와, 그 역이 존재하지 않거나, 역의 원소 값들이 무한히 커지는 불량조건 흑은 특이조건인 두 가지 형태로 존재한다. 특히, 실제 문제에 있어서 완전 해를 가진 문제이기 보다는 후자에 가까운 형태로 나타나게 된다. 결론적으로 근원데이타나 이원데이타를 이용한 문제를 해결하기 위해서는 많은 경우에 완전 해를 갖는 문제로 변형시키는 정규화과정이 필요하다. 본 논문에서는 이러한 정규화 인수를 찾는 문제를 기존의 GCV, L-Curve, 그리고 이원공간에서의 데이타를 RBF 신경회로망에 적용시킨 커널 학습법에 대한 각각의 성능을 비교실험을 통해 고찰한다. GCV와 L-Curve는 정규화 인수를 찾는 대표적인 방법으로 두 방법 모두 성능면에서 동등하며 문제의 조건에 따라 다소 차이를 보인다. 그러나 이러한 두 방법은 문제해를 구하기 위해서는 정규화 인수를 구한후 문제를 재정의하는 이원적인 문제해결이라는 취약점을 갖는다. 반면, RBF 신경회로망을 이용한 방법은 정규화 인수와 해를 동시에 학습하는 단일화된 방법이 된다. 이때 커널을 이용한 학습법의 성능을 향상하기 위해, 전체학습과 성능의 제한적 비례관계라는 설정아래, 각각의 학습에 따라 능동적으로 변화하는 동적모멘텀의 도입을 제안한다. 동적모멘트는 바이어스 학습을 포함한 방법과 포함하지 않은 방법에 각각 적용분석하였다. 끝으로 제안된 동적모멘텀이 분류문제의 표준인 Iris 데이터, Singular 시스템의 대표적 모델인 가우시안 데이타, 그리고 마지막으로 1차원 이미지 복구문제인 Shaw데이타를 이용한 각각의 실험에서 분류문제와 회계문제 양쪽 모두에 있어 기존의 GCV, L-Curve와 동등하거나 우수한 성능이 있음을 보인다.

관능특성 및 판별함수를 이용한 한우고기 맛 등급 분석 (Palatability Grading Analysis of Hanwoo Beef using Sensory Properties and Discriminant Analysis)

  • 조수현;서그러운달님;김동훈;김재희
    • 한국축산식품학회지
    • /
    • 제29권1호
    • /
    • pp.132-139
    • /
    • 2009
  • 본 연구에서는 1,300명의 소비자들이 직접 먹어보고 평가한 한우고기 데이터를 이용하여 쇠고기 맛 등급을 구분 해 내기 위한 판별분석 방법들을 비교하였다. 한우 관능평가의 주요 세 변수인 연도, 다즙성, 향미를 포함한 정준 판별분석과 대표적인 맛 변수로 여겨지는 전반적인 기호도 만을 이용하여 선형판별분석과 비모수 판별분석을 하였다. 전반적인 기호도와 같은 한 개의 변수만을 사용할 경우 두 가지 모두 비슷한 분류율을 나타내지만 선형판별 함수는 이해와 사용 측면에서 장점이 있었던 반면에 비모수적 방법은 커널함수와 띠폭에 대한 선택이 불편하지만 잘 선택하면 정확한 분류율을 높일 수 있는 장점이 있었다. 그러나 다른 정보를 가진 변수들이 있음에도 불구하고 한 개의 변수만을 이용한 판별 분석은 판별에 영향을 미치는 다른 중요한 변수들의 정보를 활용하지 못한다는 문제점이 있다. 한편, 정준판별분석의 경우 정준판별함수의 오분류율이 일변량 선형 판별함수와 비모수 판별함수의 오분류율에 비해 크게 떨어지지 않으면서 분포에 대한 특별한 가정이 필요하지 않아 통계적 가정이 까다롭지 않고 또한 맛에 중요한 요인인 연도, 다즙성, 향미의 세 개변수를 모두 사용하므로 맛 정보를 최대로 활용한다는 장점이 있었다. 따라서 본 연구결과 연도, 다즙성, 향미의 세가지 변수 정보를 모두 포함한 다변량 정준판별분석법을 이용하는 것이 맛 등급을 구분하는데 가장 적절할 것으로 판단되었다.

GCM과 수문모형의 불확실성을 고려한 기후변화에 따른 한반도 미래 수자원 전망 (Future Korean Water Resources Projection Considering Uncertainty of GCMs and Hydrological Models)

  • 배덕효;정일원;이병주;이문환
    • 한국수자원학회논문집
    • /
    • 제44권5호
    • /
    • pp.389-406
    • /
    • 2011
  • 본 연구에서는 GCM 및 유출모형의 불확실성을 고려하여 기후변화에 따른 미래 한반도 수자원의 변화를 전망하고, 그 결과에서 나타나는 불확실성을 평가하고자 하였다. 온실가스 배출시나리오와 GCMs의 불확실성을 고려하기 위해 IPCC AR4에 적용되었던 3개 시나리오(A2, A1B, B1)에 대한 13 GCMs 결과를 이용하였으며, 유출모형 구조 및 증발산량 산정방법에 따른 영향을 고려하기 위해 PRMS, SWAT, SLURP 모형을 선정하였고 각 모형별로 2~3개의 증발산량 방법을 고려하였다. 결과적으로 우리나라 109개 중권역 유역에 대해 312개의 결과가 제시되었으며, 이를 이용하여Gaussian kernel density function을 산정함으로써 평가결과의 앙상블 평균과 불확실성을 동시에 제시하였다. 분석 결과 여름철과 겨울철 유출량은 증가, 봄철은 감소할 것으로 전망되었다. 연평균유출량은 전체유역에서 증가할 것으로 전망되었으며, 공간적으로는 한강유역이 위치한 북쪽유역이 남쪽유역에 비해연 유출량이 더 크게 증가할 것으로 전망되었다. 연평균유출량의 증가는 여름철 유출량 증가에 따른 결과로, 기후변화의 영향은 한국에서 유출량의 계절편중을 심화시켜 수자원 관리를 더욱 어렵게 할 것으로 전망되었다. 평가결과에서 나타난 불확실성은 겨울철 유출량에서 가장 크고 여름철 유출량에서 가장 적은 것으로 나타났다.

블러링과 블록킹 수치를 이용한 영상의 무기준법 객관적 화질 평가 (No-reference objective quality assessment of image using blur and blocking metric)

  • 정태욱;김영희;이철희
    • 대한전자공학회논문지SP
    • /
    • 제46권3호
    • /
    • pp.96-104
    • /
    • 2009
  • 본 논문에서는 기준영상에 대한 정보가 없는 무기준(No-reference) 정지영상 객관적 화질 평가 방법을 제안한다. 제안하는 무기준 객관적 화질평가 방법은 인간의 시각체계에서 민감하게 반응하고 화질의 주된 열화 요인인 경계영역의 블록킹과 블러링을 측정하여 수치화 한다. 블록킹 정량화를 위해서, 우선 인접 화소간의 차이를 누적하여 블록킹이 발생하는 위치를 찾고 그 교차점에서 블록킹 현상을 2차원 계단함수로 모델링하여 블록킹의 국소적인 강도를 계산한다. 계산된 국소적 수치들은 적절한 함수화를 통하여 블록킹 수치로 사용된다. 이상적인 영상의 경계는 계단함수임을 가정하면 블러링된 영상에서의 경계의 전이 폭을 계산함으로써 블러링 정도를 예측할 수 있다. 주어진 영상을 다시 Gaussian 블러링 커널을 이용하여 블러링시킨 후 두 영상의 경계 마스크 영상을 이용하여 경계 블록을 결정한다. 경계블록을 수평, 수직, 두 대각선 방향으로 사영하여 얻은 사영신호로부터 국소적 극대 및 극소 위치를 이용하여 경계 전이의 폭을 추정한다. 또한 kurtosis와 SSIM을 이용하여 그 수치를 보정하여 블러링의 수치로 사용한다. 제안한 방법의 객관적 화질 수치는 주관적 화질 수치와 비교해 본 결과 높은 상관관계를 가지는 것을 확인할 수 있다.

Mean Shift 분석을 이용한 그래프 컷 기반의 자동 칼라 영상 분할 (Graph Cut-based Automatic Color Image Segmentation using Mean Shift Analysis)

  • 박안진;김정환;정기철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권11호
    • /
    • pp.936-946
    • /
    • 2009
  • 그래프 컷(graph cuts) 방법은 주어진 사전정보와 각 픽셀간의 유사도를 나타내는 데이터 항(data term)과 이웃하는 픽셀간의 유사도를 나타내는 스무드 항(smoothness term)으로 구성된 에너지 함수를 전역적으로 최소화하는 방법으로, 최근 영상 분할에 많이 이용되고 있다. 기존 그래프 컷 기반의 영상 분할 방법에서 데이터 항을 설정하기 위해 GMM(Gaussian mixture model)을 주로 이용하였으며, 평균과 공분산을 각 클래스를 위한 사전정보로 이용하였다. 이 때문에 클래스의 모양이 초구(hyper-sphere) 또는 초타원(hyper-ellipsoid)일 때만 좋은 성능을 보이는 단점이 있다. 다양한 클래스의 모양에서 좋은 성능을 보이기 위해, 본 논문에서는 mean shift 분석 방법을 이용한 그래프 컷 기반의 자동 영상분할 방법을 제안한다. 데이터 항을 설정하기 위해 $L^*u^*{\upsilon}^*$ 색상공간에서 임의로 선택된 초기 mean으로부터 밀도가 높은 지역인 모드(mode)로 이동하는 mean의 집합들을 사전정보로 이용한다. Mean shift 분석 방법은 군집화에서 좋은 성능을 보이지만, 오랜 수행시간이 소요되는 단점이 있다. 이를 해결하기 위해 특징공간을 3차원 격자로 변형하였으며, mean의 이동은 격자에서 모든 픽셀이 아닌 3차원 윈도우내의 1차원 모멘트(moment)를 이용한다. 실험에서 GMM을 이용한 그래프 컷 기반의 영상분할 방법과 최근 많이 이용되고 있는 mean shift와 normalized cut기반의 영상분할 방법을 제안된 방법과 비교하였으며, Berkeley dataset을 기반으로 앞의 세 가지 방법보다 좋은 성능을 보였다.

개선된 스케일 스페이스 필터링과 함수연결연상 신경망을 이용한 화학공정 감시 (Monitoring of Chemical Processes Using Modified Scale Space Filtering and Functional-Link-Associative Neural Network)

  • 최중환;김윤식;장태석;윤인섭
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1113-1119
    • /
    • 2000
  • To operate a process plant safely and economically, process monitoring is very important. Process monitoring is the task to identify the state of the system from sensor data. Process monitoring includes data acquisition, regulatory control, data reconciliation, fault detection, etc. This research focuses on the data recon-ciliation using scale-space filtering and fault detection using functional-link associative neural networks. Scale-space filtering is a multi-resolution signal analysis method. Scale-space filtering can extract highest frequency factors(noise) effectively. But scale-space filtering has too large calculation costs and end effect problems. This research reduces the calculation cost of scale-space filtering by applying the minimum limit to the gaussian kernel. And the end-effect that occurs at the end of the signal of the scale-space filtering is overcome by using extrapolation related with the clustering change detection method. Nonlinear principal component analysis methods using neural network have been reviewed and the separately expanded functional-link associative neural network is proposed for chemical process monitoring. The separately expanded functional-link associative neural network has better learning capabilities, generalization abilities and short learning time than the exiting-neural networks. Separately expanded functional-link associative neural network can express a statistical model similar to real process by expanding the input data separately. Combining the proposed methods-modified scale-space filtering and fault detection method using the separately expanded functional-link associative neural network-a process monitoring system is proposed in this research. the usefulness of the proposed method is proven by its application a boiler water supply unit.

  • PDF

복소 채널의 위상 왜곡 보상을 위한 델타함수 기반의 확률분포거리 최소화 블라인드 알고리듬 (PDF-Distance Minimizing Blind Algorithm based on Delta Functions for Compensation for Complex-Channel Phase Distortions)

  • 김남용;강성진
    • 한국산학기술학회논문지
    • /
    • 제11권12호
    • /
    • pp.5036-5041
    • /
    • 2010
  • 이 논문은, 델타함수열에 기본을 둔 블라인드 알고리듬을 복소 채널에 적용할 수 있도록 그 복소화 과정을 소개하고 복소 채널의 블라인드 등화에서 채널의 위상왜곡 문제를 해결할 수 있음을 보였다. 또한, 기존의 랜덤 심볼열을 사용한 방식에 비해 가우시안 커널의 폭이 비교적 작은 값을 갖는 것으로 나타나, 출력 신호점을 원하는 심볼점에 끌어오는 정보 포텐셜의 값이 보다 큰 것으로 분석되었다. 16 QAM 시스템에 복소 위상왜곡 채널을 기준으로 하여 자승평균오차 (MSE)의 수렴 성능과 심볼점 집결성능을 평가하였으며 시뮬레이션 결과에서 채널 위상 왜곡이 효과적으로 보상됨을 성상도 성능에서 보였으며 정상상태 MSE 성능에서는 기존 방식보다 5 dB 이상 개선되었다.

랜덤오더 심볼열과 상호 코렌트로피를 이용한 블라인드 알고리듬의 현실적 접근 (Practical Approach for Blind Algorithms Using Random-Order Symbol Sequence and Cross-Correntropy)

  • 김남용
    • 한국통신학회논문지
    • /
    • 제39A권3호
    • /
    • pp.149-154
    • /
    • 2014
  • 상호-코렌트로피 개념은 가우시안 커널의 커널 밀도 추정법에 의해 구축된 두 가지 서로 다른 확률밀도함수의 내적으로 표현될 수 있다. N개의 랜덤 심볼열과 상호-코렌트로피의 최대화 (MCC) 에 바탕을 두고 개발된 블라인드 알고리듬은 탁월한 학습 성능을 보인다. 그러나 이 알고리듬은 MCC 기반으로 가중치를 갱신할 목적으로 설계되면서 과도한 계산 복잡도를 지니게 된다. 이 논문에서는 상호-코렌트로피의 기울기 계산을 반복적으로 수행하여 MCC 알고리듬의 계산상의 복잡도를 크게 줄이는 방법을 제안하였다. 기존의 MCC 알고리듬은 블록 처리 방식에 의해 기울기를 계산하여 $O(N^2)$의 계산량이 필요했던 반면 제안된 방법은 O(N)의 계산만을 수행한다. 시뮬레이션 결과로부터, 제안된 이 방법이 기존의 알고리듬과 비교하여 계산량의 부담을 크게 줄이면서도 동일한 학습 성능을 보였다.