DOI QR코드

DOI QR Code

Future Korean Water Resources Projection Considering Uncertainty of GCMs and Hydrological Models

GCM과 수문모형의 불확실성을 고려한 기후변화에 따른 한반도 미래 수자원 전망

  • Bae, Deg-Hyo (Dept. of Civil and Environmental Engrg., Sejong Univ.) ;
  • Jung, Il-Won (Dept. of Geography, Portland State University) ;
  • Lee, Byung-Ju (Dept. of Civil and Environmental Engrg., Sejong Univ.) ;
  • Lee, Moon-Hwan (Dept. of Civil and Environmental Engrg., Sejong Univ.)
  • 배덕효 (세종대학교 공과대학 토목환경공학과) ;
  • 정일원 (포틀랜드주립대학교 지리학과) ;
  • 이병주 (세종대학교 공과대학 토목환경공학과) ;
  • 이문환 (세종대학교 공과대학 토목환경공학과)
  • Received : 2010.07.22
  • Accepted : 2011.05.12
  • Published : 2011.05.31

Abstract

The objective of this study is to examine the climate change impact assessment on Korean water resources considering the uncertainties of Global Climate Models (GCMs) and hydrological models. The 3 different emission scenarios (A2, A1B, B1) and 13 GCMs' results are used to consider the uncertainties of the emission scenario and GCM, while PRMS, SWAT, and SLURP models are employed to consider the effects of hydrological model structures and potential evapotranspiration (PET) computation methods. The 312 ensemble results are provided to 109 mid-size sub-basins over South Korean and Gaussian kernel density functions obtained from their ensemble results are suggested with the ensemble mean and their variabilities of the results. It shows that the summer and winter runoffs are expected to be increased and spring runoff to be decreased for the future 3 periods relative to past 30-year reference period. It also provides that annual average runoff increased over all sub-basins, but the increases in the northern basins including Han River basin are greater than those in the southern basins. Due to the reason that the increase in annual average runoff is mainly caused by the increase in summer runoff and consequently the seasonal runoff variations according to climate change would be severe, the climate change impact on Korean water resources could intensify the difficulties to water resources conservation and management. On the other hand, as regards to the uncertainties, the highest and lowest ones are in winter and summer seasons, respectively.

본 연구에서는 GCM 및 유출모형의 불확실성을 고려하여 기후변화에 따른 미래 한반도 수자원의 변화를 전망하고, 그 결과에서 나타나는 불확실성을 평가하고자 하였다. 온실가스 배출시나리오와 GCMs의 불확실성을 고려하기 위해 IPCC AR4에 적용되었던 3개 시나리오(A2, A1B, B1)에 대한 13 GCMs 결과를 이용하였으며, 유출모형 구조 및 증발산량 산정방법에 따른 영향을 고려하기 위해 PRMS, SWAT, SLURP 모형을 선정하였고 각 모형별로 2~3개의 증발산량 방법을 고려하였다. 결과적으로 우리나라 109개 중권역 유역에 대해 312개의 결과가 제시되었으며, 이를 이용하여Gaussian kernel density function을 산정함으로써 평가결과의 앙상블 평균과 불확실성을 동시에 제시하였다. 분석 결과 여름철과 겨울철 유출량은 증가, 봄철은 감소할 것으로 전망되었다. 연평균유출량은 전체유역에서 증가할 것으로 전망되었으며, 공간적으로는 한강유역이 위치한 북쪽유역이 남쪽유역에 비해연 유출량이 더 크게 증가할 것으로 전망되었다. 연평균유출량의 증가는 여름철 유출량 증가에 따른 결과로, 기후변화의 영향은 한국에서 유출량의 계절편중을 심화시켜 수자원 관리를 더욱 어렵게 할 것으로 전망되었다. 평가결과에서 나타난 불확실성은 겨울철 유출량에서 가장 크고 여름철 유출량에서 가장 적은 것으로 나타났다.

Keywords

References

  1. 권현한, 김병식(2009). "비정상성 Markov chain model을 이용한 통계학적 Downscaling 기법 개발." 한국수자원학회논문집, 한국수자원학회, 제42권, 제3호, pp. 213-225. https://doi.org/10.3741/JKWRA.2009.42.3.213
  2. 김민지, 신진호, 이효신, 권원태(2008). "동아시아지역의 AOGCM 불확실성 평가 및 미래 기후전망." 대기, 한국기상학회, 제18권, 제4호, pp. 507-524.
  3. 김병식, 서병하, 김형수, 김남원(2003). "SLURP 모형을 이용한 하천유출량 모의." 대한토목학회논문집, 대한토목학회, 제23권, 제4B호, pp. 289-303.
  4. 배덕효, 정일원, 이병주(2007). "A2 시나리오에 따른 국내 수자원의 변동성 전망." 한국수자원학회논문집, 한국수자원학회, 제40권, 제12호, pp. 921-930. https://doi.org/10.3741/JKWRA.2007.40.12.921
  5. 신진호, 이효신, 권원태, 김민지(2009). "한반도 미래 기온 변화 예측을 위한 ECHO-G/S 시나리오의 통계적 상세화에 관한 연구", 대기, 한국기상학회, 제19권, 제2호, pp. 107-125.
  6. 안소라, 박민지, 박근애, 김성준(2009). "기후변화가 경안천 유역의 수문요소에 미치는 영향 평가", 한국수자원학회논문집, 한국수자원학회, 제42권, 제1호, pp. 33-50. https://doi.org/10.3741/JKWRA.2009.42.1.33
  7. 안재현, 유철상, 윤용남(2001). "GCM 결과를 이용한 지구온난화에 따른 대청댐 유역의 수문환경 분석." 한국수자원학회논문집, 한국수자원학회, 제34권, 제4호, pp. 335-345.
  8. 이병주, 정일원, 배덕효(2009). "다변량 통계분석을 이용한 준분포형 유출모형 매개변수 지역화." 한국수자원학회논문집, 한국수자원학회, 제42권, 제2호, pp. 149-160. https://doi.org/10.3741/JKWRA.2009.42.2.149
  9. 임혁진, 권형중, 배덕효, 김성준(2006). "CA-Markov 기법을 이용한 기후변화에 따른 소양강댐 유역의 수문분석", 한국수자원학회논문집, 한국수자원학회, 제39권, 제5호, pp. 453-466. https://doi.org/10.3741/JKWRA.2006.39.5.453
  10. 정일원, 배덕효(2005). "국내유역에서의 PRMS 모형의 적용성에 관한 연구." 한국수자원학회논문집, 한국수자원학회, 제38권, 제9호, pp. 713-725.
  11. 정일원, 이병주, 전태현, 배덕효(2008). "유출모형이 기후 변화 수자원 영향평가에 미치는 영향분석" 한국수자원학회논문집, 한국수자원학회, 제41권, 제9호, pp. 907-917.
  12. Arnold, J.G., Allen, P.M., and Bemhardt, G. (1993). "A comprehensive surface-groundwater flow model." Journal of Hydrology, Vol. 142, pp. 47-69. https://doi.org/10.1016/0022-1694(93)90004-S
  13. Bae, D.H., Jung, I.W., and Chang, H. (2008a). "Longterm trend of precipitation and runoff in Korean river basins." Hydrological Processes, Vol. 22, pp. 2644-2656. https://doi.org/10.1002/hyp.6861
  14. Bae, D.H., Jung, I.W., and Chang, H. (2008b). "Potential changes in Korean water resources estimated by high-resolution climate simulation." Climate Research, Vol. 35, pp. 213-226. https://doi.org/10.3354/cr00704
  15. Bae, D.H., Jung, I.W., and Lettenmaier, D.P. (2010). "Hydrologic uncertainties in climate change from IPCC AR4 GCM simulations of the Chungju basin, Korea." Journal of Hydrology, DOI: 10.1016/jjhydrol.2011.02.012.
  16. Beven, K.J. (2000). "Uniqueness of place and process representations in hydrological modelling." Hydrology and Earth System Sciences, Vol. 4, No. 2, pp. 203-213. https://doi.org/10.5194/hess-4-203-2000
  17. Beven, K., and Binley, A. (1992). "The future of distributed models: Model calibration and uncertainty prediction." Hydrological Processes, Vol. 6, No. 3, pp. 207-298.
  18. Chang, H., Franczyk, J., Im, E., Kwon, W.T., Bae, D.H., and Jung, I.W. (2007). "Vulnerability of Korean water resources to climate change and population growth." Water Science and Technology, Vol. 56, No. 4, pp. 57-62. https://doi.org/10.2166/wst.2007.536
  19. Christensen, N.S., and Lettenmaier, D.P. (2007). "A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin." Hydrology and Earth System Sciences, Vol. 11, pp. 1417-1434. https://doi.org/10.5194/hess-11-1417-2007
  20. Giorgi, F., and Mearns, L.O. (2002). "Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the "Reliability Ensemble Averaging (REA) method." Journal of Climate, Vol. 15, No. 10, pp. 1141-1158. https://doi.org/10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2
  21. Granger, R.J. (1991). Evaporation from natural nonsaturated surfaces. Ph.D. Thesis, Department of Agricultural Engineering, University of Saskatchewan, Saskatoon, p. 140.
  22. Hamon, W.R. (1961). "Estimating potential evapotranspiration, Proceedings of the American Society of Civil Engineers." Journal of the Hydraulic Division, Vol. 87, No. HY3 pp. 107-120.
  23. Hargreaves, G.L., Hargreaves, G.H., and Riley, J.P. (1985). "Agricultural benefits for Senegal River Basin." Journal of Irrigation and Drainage, Vol. 111, No. 2, pp. 113-124. https://doi.org/10.1061/(ASCE)0733-9437(1985)111:2(113)
  24. Im, E.S., Jung, I.W., and Bae, D.H. (2010a). "The temporal and spatial structures of recent and future trends in extreme indices over Korea from a regional climate projection." International Journal of Climatology, DOI: 10.1002/joc.2063.
  25. Im, E.S., Jung, I.W., Chang, H., Bae, D.H., and Kwon, W.T. (2010b). "Hydroclimatological response to dynamically downscaled climate change simulations for Korean basins." Climatic Change, Vol. 100, No. 3-4, pp. 485-508. https://doi.org/10.1007/s10584-009-9691-2
  26. IPCC(2001). Climate change 2001: The Scientific Basis, IPCC Contribution ofWorking Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.
  27. IPCC(2007). Climate change 2007: The Scientific Basis, IPCC Contribution ofWorking Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.
  28. Jensen, M.E., and Haise, H.R. (1963). "Estimating evapotranspiration from solar radiation." Proceedings of the American Society of Civil Engineers. Journal of Irrigation and Drainage, Vol. 89, No. IR4, pp. 15-41.
  29. Jha, M., Arnold, J.G., Gassman, P.W., Giorgi, F., and Gu, R.R. (2006). "Climate change sensitivity assessment on upper Mississippi river basin streamflows using SWAT." Journal of the American Water Resources Association, Vol. 42, No. 4, pp. 997-1016. https://doi.org/10.1111/j.1752-1688.2006.tb04510.x
  30. Jiang, T., Chen, Y.D., Xu, C., Chen, X., Chen, X., and Singh, V.P. (2007). "Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin." South China. Journal of Hydrology, Vol. 336, pp. 316-333. https://doi.org/10.1016/j.jhydrol.2007.01.010
  31. Jung, I.W., Bae, D.H., and Kim, G. (2010). "Recent trends of mean and extreme precipitation in Korea." International Journal of Climatology, DOI: 10.1002/joc.2068.
  32. Khan, M.S., Coulibaly, P., and Dibike, Y. (2006). "Uncertainty analysis of statistical downscaling methods." Journal of Hydrology, Vol. 319, pp. 357-382. https://doi.org/10.1016/j.jhydrol.2005.06.035
  33. Kim, B.S., Kim, H.S., and Seoh, B.H. (2007). "Impact of climate change on water resources in Yongdam Dam Basin, Korea." Stoch Environ Res Ris Assess, Vol. 21, pp. 355-373. https://doi.org/10.1007/s00477-006-0070-5
  34. Kite, G.W., Dalton, A., and Dion, K. (1994). "Simulation of streamflow in a macroscale watershed using general circulation model data." Water Resources Research, Vol. 30, No. 5, pp. 1547-1559. https://doi.org/10.1029/94WR00231
  35. Kite, G.W., and Haberlant, U. (1999). "Atmospheric model data for macroscale hydrology." Journal of Hydrology, Vol. 217, pp. 303-313. https://doi.org/10.1016/S0022-1694(98)00230-3
  36. Leavesley, G.H., Lichty, R.W., Troutman, B.M., and Saindon, L.G. (1983). "Precipitation-Runoff Modeling System." User's manual, by Water-Resources Investigations, pp. 83-4238.
  37. Li, Q., and Racine, J.S. (2007). "Nonparametric econometrics: Theory and Practice." Princeton University Press, ISBN 0691121613.
  38. Maurer, E.P. (2007). "Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios." Climatic Change, Vol. 82, pp. 309-325. https://doi.org/10.1007/s10584-006-9180-9
  39. Monteith, J.L. (1965). Evaporation and the environment, In "The state and movement of water in living organisms", XIXth Symposium. Society for Experimental Biology, Swansea, Cambridge University Press. pp. 205-234.
  40. New, M., Lopez, A., Dessai, S., and Wilby, R. (2007). "Challenges in using probabilistic climate change information for impact assessments: an example from the water sector." Philosophical Transactions of The Royal Society, Vol. A365, pp. 2117-2131.
  41. Oki, T., and Kanae, S. (2006). "Global hydrological cycles and world water resources." Science, Vol. 313, pp. 1068-1072. https://doi.org/10.1126/science.1128845
  42. Shimazaki, H., and Shinomoto, S. (2010). "Kernel bandwidth optimization in spike rate estimation." Journal of Computational Neuroscience, Vol. 29, pp. 171-182. https://doi.org/10.1007/s10827-009-0180-4
  43. Spittlehouse, D.L. (1989). Estimating evapotranspiration from land surfaces in British Columbia. In: Estimation of Areal Evapotranspiration. IAHS Publication, No. 177, pp. 245-253.
  44. Wilby, R.L. (2005). "Uncertainty in water resource model parameters used for climate change impact assessment." Hydrological Processes, Vol. 19, No. 16, pp. 3201-3219. https://doi.org/10.1002/hyp.5819
  45. Wilby, R.L., and Dessai, S. (2010). "Robust adaptation to climate change." Weather, Vol. 65, No. 7, pp. 180-185. https://doi.org/10.1002/wea.543
  46. Wilby, R.L., Hay, L.E., Gutowski, W.J., Arritt, R.W., Takle, E.S., Pan, T.Z., Leavesley, G.H., and Clark, M.P. (2000). "Hydrological responses to dynamically and statistically downscaled climate model output." Geophysical Research Letters, Vol. 27, No. 8, pp. 1199-1202. https://doi.org/10.1029/1999GL006078
  47. Wood, A.W., Leung, L.R., Sridhar, V., and Lettenmaier, D.P. (2004). "Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs." Climatic Change, Vol. 62, pp. 189-216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e

Cited by

  1. Projection of Future Drought of Korea Based on Probabilistic Approach Using Multi-model and Multi Climate Change Scenarios vol.33, pp.5, 2013, https://doi.org/10.12652/Ksce.2013.33.5.1871
  2. Analysis of climate change impacts on the spatial and frequency patterns of drought using a potential drought hazard mapping approach vol.34, pp.1, 2014, https://doi.org/10.1002/joc.3666
  3. Future Projections of Köppen Climate Shifts in the Asia Regions Using A2 Scenario vol.46, pp.3, 2013, https://doi.org/10.3741/JKWRA.2013.46.3.253
  4. GCMs-Driven Snow Depth and Hydrological Simulation for 2018 Pyeongchang Winter Olympics vol.46, pp.3, 2013, https://doi.org/10.3741/JKWRA.2013.46.3.229
  5. Projection of Future Water Supply Sustainability in Agricultural Reservoirs under RCP Climate Change Scenarios vol.56, pp.4, 2014, https://doi.org/10.5389/KSAE.2014.56.4.059
  6. Uncertainty Characteristics in Future Prediction of Agrometeorological Indicators using a Climatic Water Budget Approach vol.57, pp.2, 2015, https://doi.org/10.5389/KSAE.2015.57.2.001
  7. Possible change in Korean streamflow seasonality based on multi-model climate projections vol.27, pp.7, 2013, https://doi.org/10.1002/hyp.9215
  8. Hydrological Assessment of Multifractal Space-Time Rainfall Downscaling Model: Focusing on Application to the Upstream Watershed of Chungju Dam vol.47, pp.10, 2014, https://doi.org/10.3741/JKWRA.2014.47.10.959
  9. Future Trend Analysis of Hydrologic Time Series in Chungju Dam Basin Using Quantile Regression vol.15, pp.3, 2015, https://doi.org/10.9798/KOSHAM.2015.15.3.275
  10. Uncertainty of Water Supply in Agricultural Reservoirs Considering the Climate Change vol.56, pp.2, 2014, https://doi.org/10.5389/KSAE.2014.56.2.011
  11. Future Inflow Simulation Considering the Uncertainties of TFN Model and GCMs on Chungju Dam Basin vol.47, pp.2, 2014, https://doi.org/10.3741/JKWRA.2014.47.2.135
  12. Performance Evaluation of CMIP5 GCMs using CSEOF Analysis vol.16, pp.1, 2016, https://doi.org/10.9798/KOSHAM.2016.16.1.265
  13. Evaluation of Hybrid Downscaling Method Combined Regional Climate Model with Step-Wise Scaling Method vol.46, pp.6, 2013, https://doi.org/10.3741/JKWRA.2013.46.6.585
  14. The Use and Abuse of Climate Scenarios in Agriculture vol.18, pp.3, 2016, https://doi.org/10.5532/KJAFM.2016.18.3.170
  15. A multimodel assessment of the climate change effect on the drought severity-duration-frequency relationship vol.27, pp.19, 2013, https://doi.org/10.1002/hyp.9390
  16. Future Changes in Drought Characteristics under Extreme Climate Change over South Korea vol.2016, 2016, https://doi.org/10.1155/2016/9164265
  17. Projection of Climate Change with Uncertainties: 1. GCM and RCP Uncertainties vol.14, pp.5, 2014, https://doi.org/10.9798/KOSHAM.2014.14.5.317
  18. Evaluation of Agro-Climatic Index Using Multi-Model Ensemble Downscaled Climate Prediction of CMIP5 vol.17, pp.2, 2015, https://doi.org/10.5532/KJAFM.2015.17.2.108
  19. The Uncertainty of Extreme Rainfall in the Near Future and its Frequency Analysis over the Korean Peninsula using CMIP5 GCMs vol.48, pp.10, 2015, https://doi.org/10.3741/JKWRA.2015.48.10.817
  20. Relationship between groundwater and climate change in South Korea vol.18, pp.2, 2014, https://doi.org/10.1007/s12303-013-0062-7
  21. The Application Assessment of Future Design Rainfall Estimation Method Using Scale Properties vol.45, pp.3, 2012, https://doi.org/10.3741/JKWRA.2012.45.3.253
  22. A new uncertainty analysis in the climate change impact assessment vol.37, pp.10, 2017, https://doi.org/10.1002/joc.4957
  23. Analysis of Future Hydrological Cycle considering the Impact of Climate Change and Hydraulic Structures in Geum River Basin vol.14, pp.5, 2014, https://doi.org/10.9798/KOSHAM.2014.14.5.299
  24. Assessing the Performance of CMIP5 GCMs for Various Climatic Elements and Indicators over the Southeast US vol.47, pp.11, 2014, https://doi.org/10.3741/JKWRA.2014.47.11.1039