• Title/Summary/Keyword: Gauss hypergeometric functions

Search Result 43, Processing Time 0.025 seconds

ALTERNATIVE DERIVATIONS OF CERTAIN SUMMATION FORMULAS CONTIGUOUS TO DIXON'S SUMMATION THEOREM FOR A HYPERGEOMETRIC $_3F_2$ SERIES

  • Choi, June-Sang;Rathie Arjun K.;Malani Shaloo;Mathur Rachana
    • The Pure and Applied Mathematics
    • /
    • v.13 no.4 s.34
    • /
    • pp.255-259
    • /
    • 2006
  • In 1994, Lavoie et al. have obtained twenty tree interesting results closely related to the classical Dixon's theorem on the sum of a $_3F_2$ by making a systematic use of some known relations among contiguous functions. We aim at showing that these results can be derived by using the same technique developed by Bailey with the help of Gauss's summation theorem and generalized Kummer's theorem obtained by Lavoie et al..

  • PDF

NEW LAPLACE TRANSFORMS FOR THE GENERALIZED HYPERGEOMETRIC FUNCTION 2F2

  • KIM, YONG SUP;RATHIE, ARJUN K.;LEE, CHANG HYUN
    • Honam Mathematical Journal
    • /
    • v.37 no.2
    • /
    • pp.245-252
    • /
    • 2015
  • This paper is in continuation of the paper very recently published [New Laplace transforms of Kummer's confluent hypergeometric functions, Math. Comp. Modelling, 55 (2012), 1068-1071]. In this paper, our main objective is to show one can obtain so far unknown Laplace transforms of three rather general cases of generalized hypergeometric function $_2F_2(x)$ by employing generalized Watson's, Dixon's and Whipple's summation theorems for the series $_3F_2$ obtained earlier in a series of three research papers by Lavoie et al. [5, 6, 7]. The results established in this paper may be useful in theoretical physics, engineering and mathematics.

ON THE COMPUTATIONS OF CONTIGUOUS RELATIONS FOR 2F1 HYPERGEOMETRIC SERIES

  • Rakha, Medhat A.;Ibrahim, Adel K.;Rathie, Arjun K.
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.291-302
    • /
    • 2009
  • Contiguous relations for hypergeometric series contain an enormous amount of hidden information. Applications of contiguous relations range from the evaluation of hypergeometric series to the derivation of summation and transformation formulas for such series. In this paper, a general formula joining three Gauss functions of the form $_2F_1$[$a_1$, $a_2$; $a_3$; z] with arbitrary integer shifts is presented. Our analysis depends on using shifted operators attached to the three parameters $a_1$, $a_2$ and $a_3$. We also, discussed the existence condition of our formula.

CERTAIN DECOMPOSITION FORMULAS OF GENERALIZED HYPERGEOMETRIC FUNCTIONS pFq AND SOME FORMULAS OF AN ANALYTIC CONTINUATION OF THE CLAUSEN FUNCTION 3F2

  • Choi, June-Sang;Hasanov, Anvar
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.107-116
    • /
    • 2012
  • Here, by using the symbolical method introduced by Burchnall and Chaundy, we aim at constructing certain expansion formulas for the generalized hypergeometric function $_pF_q$. In addition, using our expansion formulas for $_pF_q$, we present formulas of an analytic continuation of the Clausen hypergeometric function $_3F_2$, which are much simpler than an earlier known result. We also give some integral representations for $_3F_2$.

AN EXTENSION OF THE EXTENDED HURWITZ-LERCH ZETA FUNCTIONS OF TWO VARIABLES

  • Choi, Junesang;Parmar, Rakesh K.;Saxena, Ram K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1951-1967
    • /
    • 2017
  • We aim to introduce a further extension of a family of the extended Hurwitz-Lerch Zeta functions of two variables. We then systematically investigate several interesting properties of the extended function such as its integral representations which provide extensions of various earlier corresponding results of two and one variables, its summation formula, its Mellin-Barnes type contour integral representations, its computational representation and fractional derivative formulas. A multi-parameter extension of the extended Hurwitz-Lerch Zeta function of two variables is also introduced. Relevant connections of certain special cases of the main results presented here with some known identities are pointed out.

A STARLIKENESS CONDITION ASSOCIATED WITH THE RUSCHEWEYH DERIVATIVE

  • Li, Jian-Lin;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • v.18 no.1
    • /
    • pp.1-13
    • /
    • 2002
  • Some Miller-Mocanu type arguments are used here in order to establish a general starlikeness condition involving the familiar Ruscheweyh derivative. Relevant connections with the various known starlikeness conditions are also indicated. This paper concludes with several remarks and observations in regard especially to the nonsharpness of the main starlike condition presented here.

  • PDF

FRACTIONAL INTEGRATION AND DIFFERENTIATION OF THE (p, q)-EXTENDED BESSEL FUNCTION

  • Choi, Junesang;Parmar, Rakesh K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.599-610
    • /
    • 2018
  • We aim to present some formulas for Saigo hypergeometric fractional integral and differential operators involving (p, q)-extended Bessel function $J_{{\nu},p,q}(z)$, which are expressed in terms of Hadamard product of the (p, q)-extended Gauss hypergeometric function and the Fox-Wright function $_p{\Psi}_q(z)$. A number of interesting special cases of our main results are also considered. Further, it is emphasized that the results presented here, which are seemingly complicated series, can reveal their involved properties via those of the two known functions in their respective Hadamard product.

SOME DECOMPOSITION FORMULAS ASSOCIATED WITH THE SARAN FUNCTION FE

  • Kim, Yong-Sup;Hasanov, Anvar;Lee, Chang-Hyun
    • Honam Mathematical Journal
    • /
    • v.32 no.4
    • /
    • pp.581-592
    • /
    • 2010
  • With the help of some techniques based upon certain inverse pairs of symbolic operators initiated by Burchnall-Chaundy, the authors investigate decomposition formulas associated with Saran's function $F_E$ in three variables. Many operator identities involving these pairs of symbolic operators are first constructed for this purpose. By employing their decomposition formulas, we also present a new group of integral representations for the Saran function $F_E$.

APPLICATION OF THE RELATION ASSOCIATED WITH 3F2 DUE TO THOMAE

  • KIM, YONG SUP;LEE, SEUNG WOO;SONG, HYEONG KEE;NAM, IN KYEONG
    • Honam Mathematical Journal
    • /
    • v.26 no.1
    • /
    • pp.133-136
    • /
    • 2004
  • By elementry manipulation of series together with summations of Gauss and $Saalsch\ddot{u}tz$, Exton deduced a new two term relation for the hypergeometric function $_3F_2(1)$. The aim of this paper is to derive Exton's result from Thomae's formula, together with two known integral formulas and the Euler's transformation for $_2F_1$.

  • PDF