References
- M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York, Dover, 1972
- P. Agarwal, Contiguous relations for bilateral basic hypergeometric series, Int. J. Math. Sci. 3 (2004), 375–388
- G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999
- G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, 35, Cambridge University Press, Cambridge 1990
- C. F. Gauss, Disquisitiones generales circa seriem infinitam, Comm. soc. reg. sci. Gott. rec. Vol. II; reprinted in Werke 3 (1876), 123–162
- D. Gupta, Contiguous relations, basic hypergeometric functions and orthogonal polynomials III. Associated contiguous dual q−Hann polynomials, J. Comput. Appl. Math. 68 (1996), no. 1-2, 115–149
- D. Gupta, Contiguous relations, continued fractions and orthogonality, Trans. Amer. Math. Soc. 350 (1998), no. 2, 679–808
- Hypergeometric2F1, http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/17/02/01/
-
A. K. Ibrahim and M. A. Rakha, Contiguous relations for
$_2F_1$ hypergeometric series, Submitted for Publications - M. Ismail and C. Libis, Contiguous relations, basic hypergeometric functions and orthogonal polynomials, J. Math. Anal. Appl. 141 (1989), no. 2, 349–372
-
J. L. Lavoie, F. Grondin, and A. K. Rathie, Generalizations of Watson's theorem on the sum of
$_3F_2$ , Indian J. Math. 32 (1992), 23–32 -
J. L. Lavoie, F. Grondin, and A. K. Rathie, Generalizations of Whipple's theorem on the sum of a
$_3F_2$ , J. Comput. Appl. Math. 72 (1996), 293–300 https://doi.org/10.1016/0377-0427(95)00279-0 -
J. L. Lavoie, F. Grondin, A. K. Rathie, and K. Arora, Generalizations of Dixon's theorem on the sum a
$_3F_2$ , Math. Comp. 63 (1994), 367–376 - W. Miller, Jr., Lie theory and generalizations of hypergeometric functions, SIAM J. Appl. Math. 25 (1973), no. 1, 226–235
-
T. Morita, Use of Gauss contiguous relation in computing the hypergeometric functions
$_2F_1[n+\frac{1}{\2},n+\frac{1}{\2};m;z]$ , Inderdiscip. Inform. Sci. 2 (1996), no. 1, 63–74 - P. Paule, Contiguous Relations and Creative Telescopy, Technical report, RISC, Austria, 2001
-
E. D. Rainville, The contiguous function relations for ,
$_pF_q$ with applications to Bateman's$J^{u,v}_n$ and Rice's$H_n(\zeta,p,v)$ , Bull. Amer. Math. Soc. Ser. 2 51 (1945), 714–723 https://doi.org/10.1090/S0002-9904-1945-08425-0 - E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960
- M. A. Rakha and A. K. Ibrahim, On the contiguous relations of hypergeometric series, J. of Comput. Appl. Math. 192 (2006), 396–410 https://doi.org/10.1016/j.cam.2005.05.016
- M. A. Rakha and A. K. Ibrahim, Contiguous relations and their computations for 2F1 hypergeometric series, Comput. Math. Appl. (56) (2008), 1918–1926
- K. C. Richards, Shap power mean bounds for Gaussian hypergeometric functions, J. Math. Anal. Appl. 38 (2005), 303–313 https://doi.org/10.1016/j.jmaa.2005.01.018
- R. Vidunas, A generalization of Kummer's identity, Rocky Mountain J. Math. 32(2002), no. 2, 919–935 https://doi.org/10.1216/rmjm/1030539701
- R. Vidunas, Contiguous relations of hypergeometric series, J. Math. Anal. Appl. 135 (2003), 507–519 https://doi.org/10.1016/S0377-0427(02)00643-X
Cited by
- Classical Klein–Gordon solutions, symplectic structures, and isometry actions on AdS spacetimes vol.70, 2013, https://doi.org/10.1016/j.geomphys.2013.03.007
- On some new contiguous relations for the Gauss hypergeometric function with applications vol.61, pp.3, 2011, https://doi.org/10.1016/j.camwa.2010.12.008