• Title/Summary/Keyword: Gauss's transformation formula

Search Result 7, Processing Time 0.025 seconds

NEW RESULTS FOR THE SERIES 2F2(x) WITH AN APPLICATION

  • Choi, Junesang;Rathie, Arjun Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.65-74
    • /
    • 2014
  • The well known quadratic transformation formula due to Gauss: $$(1-x)^{-2a}{_2F_1}\[{{a,b;}\\\hfill{21}{2b;}}\;-\frac{4x}{(1-x)^2}\]={_2F_1}\[{{a,a-b+\frac{1}{2};}\\\hfill{65}{b+\frac{1}{2};}}\;x^2\]$$ plays an important role in the theory of (generalized) hypergeometric series. In 2001, Rathie and Kim have obtained two results closely related to the above quadratic transformation for $_2F_1$. Our main objective of this paper is to deduce some interesting known or new results for the series $_2F_1(x)$ by using the above Gauss's quadratic transformation and its contiguous relations and then apply our results to provide a list of a large number of integrals involving confluent hypergeometric functions, some of which are (presumably) new. The results established here are (potentially) useful in mathematics, physics, statistics, engineering, and so on.

GENERALIZATIONS OF GAUSS'S SECOND SUMMATION THEOREM AND BAILEY'S FORMULA FOR THE SERIES 2F1(1/2)

  • Rathie, Arjun K.;Kim, Yong-Sup;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.569-575
    • /
    • 2006
  • We aim mainly at presenting two generalizations of the well-known Gauss's second summation theorem and Bailey's formula for the series $_2F_1(1/2)$. An interesting transformation formula for $_pF_q$ is obtained by combining our two main results. Relevant connections of some special cases of our main results with those given here or elsewhere are also pointed out.

Generalization of a Transformation Formula for the Exton's Triple Hypergeometric Series X12 and X17

  • Choi, Junesang;Rathie, Arjun K.
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.677-684
    • /
    • 2014
  • In the theory of hypergeometric functions of one or several variables, a remarkable amount of mathematicians's concern has been given to develop their transformation formulas and summation identities. Here we aim at generalizing the following transformation formula for the Exton's triple hypergeometric series $X_{12}$ and $X_{17}$: $$(1+2z)^{-b}X_{17}\;\left(a,b,c_3;\;c_1,c_2,2c_3;\;x,{\frac{y}{1+2z}},{\frac{4z}{1+2z}}\right)\\{\hfill{53}}=X_{12}\;\left(a,b;\;c_1,c_2,c_3+{\frac{1}{2}};\;x,y,z^2\right).$$ The results are derived with the help of two general hypergeometric identities for the terminating $_2F_1(2)$ series which were very recently obtained by Kim et al. Four interesting results closely related to the Exton's transformation formula are also chosen, among ten, to be derived as special illustrative cases of our main findings. The results easily obtained in this paper are simple and (potentially) useful.

TWO RESULTS FOR THE TERMINATING 3F2(2) WITH APPLICATIONS

  • Kim, Yong-Sup;Choi, June-Sang;Rathie, Arjun K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.621-633
    • /
    • 2012
  • By establishing a new summation formula for the series $_3F_2(\frac{1}{2})$, recently Rathie and Pogany have obtained an interesting result known as Kummer type II transformation for the generalized hypergeometric function $_2F_2$. Here we aim at deriving their result by using a very elementary method and presenting two elegant results for certain terminating series $_3F_2(2)$. Furthermore two interesting applications of our new results are demonstrated.

APPLICATION OF THE RELATION ASSOCIATED WITH 3F2 DUE TO THOMAE

  • KIM, YONG SUP;LEE, SEUNG WOO;SONG, HYEONG KEE;NAM, IN KYEONG
    • Honam Mathematical Journal
    • /
    • v.26 no.1
    • /
    • pp.133-136
    • /
    • 2004
  • By elementry manipulation of series together with summations of Gauss and $Saalsch\ddot{u}tz$, Exton deduced a new two term relation for the hypergeometric function $_3F_2(1)$. The aim of this paper is to derive Exton's result from Thomae's formula, together with two known integral formulas and the Euler's transformation for $_2F_1$.

  • PDF

CERTAIN IDENTITIES ASSOCIATED WITH GENERALIZED HYPERGEOMETRIC SERIES AND BINOMIAL COEFFICIENTS

  • Lee, Keum-Sik;Cho, Young-Joon;Choi, June-Sang
    • The Pure and Applied Mathematics
    • /
    • v.8 no.2
    • /
    • pp.127-135
    • /
    • 2001
  • The main object of this paper is to present a transformation formula for a finite series involving $_3F_2$ and some identities associated with the binomial coefficients by making use of the theory of Legendre polynomials $P_{n}$(x) and some summation theorems for hypergeometric functions $_pF_q$. Some integral formulas are also considered.

  • PDF