• Title/Summary/Keyword: Gauss's second summation theorem

Search Result 12, Processing Time 0.024 seconds

ON BASIC ANALOGUE OF CLASSICAL SUMMATION THEOREMS DUE TO ANDREWS

  • Harsh, Harsh Vardhan;Rathie, Arjun K.;Purohit, Sunil Dutt
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.25-37
    • /
    • 2016
  • In 1972, Andrews derived the basic analogue of Gauss's second summation theorem and Bailey's theorem by implementing basic analogue of Kummer's theorem into identity due to Jackson. Recently Lavoie et.al. derived many results closely related to Kummer's theorem, Gauss's second summation theorem and Bailey's theorem and also Rakha et. al. derive the basic analogues of results closely related Kummer's theorem. The aim of this paper is to derive basic analogues of results closely related Gauss's second summation theorem and Bailey's theorem. Some applications and limiting cases are also considered.

FURTHER SUMMATION FORMULAS FOR THE APPELL'S FUNCTION $F_1$

  • CHOI JUNESANG;HARSH HARSHVARDHAN;RATHIE ARJUN K.
    • The Pure and Applied Mathematics
    • /
    • v.12 no.3 s.29
    • /
    • pp.223-228
    • /
    • 2005
  • In 2001, Choi, Harsh & Rathie [Some summation formulas for the Appell's function $F_1$. East Asian Math. J. 17 (2001), 233-237] have obtained 11 results for the Appell's function $F_1$ with the help of Gauss's summation theorem and generalized Kummer's summation theorem. We aim at presenting 22 more results for $F_1$ with the help of the generalized Gauss's second summation theorem and generalized Bailey's theorem obtained by Lavoie, Grondin & Rathie [Generalizations of Whipple's theorem on the sum of a $_3F_2$. J. Comput. Appl. Math. 72 (1996), 293-300]. Two interesting (presumably) new special cases of our results for $F_1$ are also explicitly pointed out.

  • PDF

NOTE ON THE CLASSICAL WATSON'S THEOREM FOR THE SERIES 3F2

  • Choi, Junesang;Agarwal, P.
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.701-706
    • /
    • 2013
  • Summation theorems for hypergeometric series $_2F_1$ and generalized hypergeometric series $_pF_q$ play important roles in themselves and their diverse applications. Some summation theorems for $_2F_1$ and $_pF_q$ have been established in several or many ways. Here we give a proof of Watson's classical summation theorem for the series $_3F_2$(1) by following the same lines used by Rakha [7] except for the last step in which we applied an integral formula introduced by Choi et al. [3].

GENERALIZATIONS OF GAUSS'S SECOND SUMMATION THEOREM AND BAILEY'S FORMULA FOR THE SERIES 2F1(1/2)

  • Rathie, Arjun K.;Kim, Yong-Sup;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.569-575
    • /
    • 2006
  • We aim mainly at presenting two generalizations of the well-known Gauss's second summation theorem and Bailey's formula for the series $_2F_1(1/2)$. An interesting transformation formula for $_pF_q$ is obtained by combining our two main results. Relevant connections of some special cases of our main results with those given here or elsewhere are also pointed out.

ON CERTAIN REDUCIBILITY OF KAMPE DE FERIET FUNCTION

  • Kim, Yong-Sup
    • Honam Mathematical Journal
    • /
    • v.31 no.2
    • /
    • pp.167-176
    • /
    • 2009
  • The aim of this paper is to obtain three interesting results for reducibility of Kamp$\'{e}$ de $\'{e}$riet function. The results are derived with the help of contiguous Gauss's second summation formulas obtained earlier by Lavoie et al. The results obtained by Bailey, Rathie and Nagar follow special cases of our main findings.

OTHER PROOFS OF KUMMER'S SECOND THEOREM

  • Malani, Shaloo;Choi, June-Sang
    • East Asian mathematical journal
    • /
    • v.17 no.1
    • /
    • pp.129-133
    • /
    • 2001
  • The aim of this research note is to derive the well known Kummer's second theorem by transforming the integrals which represent some generalized hypergeometric functions. This theorem can also be shown by combining two known Bailey's and Preece's identities for the product of generalized hypergeometric series.

  • PDF

TWO RESULTS FOR THE TERMINATING 3F2(2) WITH APPLICATIONS

  • Kim, Yong-Sup;Choi, June-Sang;Rathie, Arjun K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.621-633
    • /
    • 2012
  • By establishing a new summation formula for the series $_3F_2(\frac{1}{2})$, recently Rathie and Pogany have obtained an interesting result known as Kummer type II transformation for the generalized hypergeometric function $_2F_2$. Here we aim at deriving their result by using a very elementary method and presenting two elegant results for certain terminating series $_3F_2(2)$. Furthermore two interesting applications of our new results are demonstrated.

REMARKS ON A SUMMATION FORMULA FOR THREE-VARIABLES HYPERGEOMETRIC FUNCTION $X_8$ AND CERTAIN HYPERGEOMETRIC TRANSFORMATIONS

  • Choi, June-Sang;Rathie, Arjun K.;Harsh, H.
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.481-486
    • /
    • 2009
  • The first object of this note is to show that a summation formula due to Padmanabham for three-variables hypergeometric function $X_8$ introduced by Exton can be proved in a different (from Padmanabham's and his observation) yet, in a sense, conventional method, which has been employed in obtaining a variety of identities associated with hypergeometric series. The second purpose is to point out that one of two seemingly new hypergeometric identities due to Exton was already recorded and the other one is easily derivable from the first one. A corrected and a little more compact form of a general transform involving hypergeometric functions due to Exton is also given.