• Title/Summary/Keyword: Gauge method

Search Result 638, Processing Time 0.031 seconds

Deflection Estimation of a PSC Railroad Girder using Long-gauge Fiber Optic Sensors (Long-gauge 광섬유 센서를 이용한 철도교 PSC 거더의 처짐유추)

  • Chung Won-Seok;Kim Sung-Il;Kim Nam-Sik;Lee Hee-Up
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.467-472
    • /
    • 2006
  • This paper deals with the applicability of long-gauge deformation fiber optic sensors (FOS) to prestressed concrete structures. A main motivation is the desire to monitor the deflection of the railway bridges without intervenes of the signal intensity fluctuations. A 25 m long, 1.8 m deep PSC girder was fabricated compositely with 22 cm thick reinforced concrete deck. Two pairs of 3 m long-gauge sensors are attached to the prestressed concrete girder with parallel topology. Using the relationship between curvature and vortical deflection and the quadratic regression of curvatures at the discrete point, it is possible to extrapolate the deflection curve of the girder. The estimated deflection based on the developed method is compared with the results using conventional strain gauges and LVDTS. It has been demonstrated that the proposed instrumentation technique is capable of estimating the vertical deflection and neutral axis position of the prestressed concrete girder up to weak nonlinear region.

Development of Inspection Gauge System for Gas Pipeline

  • Han, Hyung-Seok;Yu, Jae-Jong;Park, Chan-Gook;Lee, Jang-Gyu
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.370-378
    • /
    • 2004
  • An autonomous pipeline inspection gauge system has been developed for determining position, orientation, curvature, and deformations such as dents and wrinkles of operating pipelines by Korea Gas Company and Seoul National University. The most important part of several subsystems is the Strapdown Inertial Measurement Unit (SIMU), which is integrated with velocity and distance sensors, weld detection system, and digital recording device. The Geometry Pipeline Inspection Gauge (GeoPIG) is designed to operate continuously and autonomously for a week or longer in operating gas pipelines. In this paper, the design concepts, system integration, and data processing/analysis method for the PIG will be presented. Results from the recent experiment for a 58 kilometer gas pipeline will be discussed.

Stress Measurement of films using surface micromachined test structures (표면 미세 가공된 구조체를 이용한 박막의 응력 측정)

  • 이창승;정회환;노광수;이종현;유형준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.721-725
    • /
    • 1996
  • The microfabricated test structures were used in order to evaluate the stress characteristics in films. The test structures were fabricated using surface micromachining technique, including HF vapor phase etching as an effective release method. The fabricated structures were micro strain gauge, cantilever-type vernier gauge and bridge for stress measurement, and cantilever for stress gradient measurement. The strain was measures by observing the deformation of the structures occurred after release etching and the amount of deformation can be detected by micro vernier gauge, which has gauge resolution of 0.2${\mu}{\textrm}{m}$. The detection principles and the degree of precision for the measured strain were also discussed. The characteristics of residual stress in LPCVD polysilicon films were studied using these test structures. The stress gradient due to the stress variation through the film thickness was calculated by measuring the deflection at the cantilever free end.

  • PDF

Water Level Measurement Method Based on Temporal Variation of Water Surface Pixel Arrangement in Successive Images (수면 영상의 시간적 픽셀농도변화를 이용한 수위계측방법)

  • Kwon, Sung-Ill;Kim, Won;Lee, Chan-Joo;Kim, Seung-Dong
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.9
    • /
    • pp.781-787
    • /
    • 2010
  • A new method for water level measurement method and its verification results are described. In this method, water surface in motion can be detected by temporal variation of pixel arrangement in successive digital images including the boundary between the staff gauge and the water surface. Laboratory and field tests were conducted for the two cases in which the staff gauge was contaminated by dirt or transparent due to clear water. The result shows water level can be accurately measure by this method for these two cases. It is expected that the accuracy of previous image stage gauge will be improved by the new method.

High Resolution FMCW Level Gauge with Narrowband FMCW Radar (협대역 FMCW 레이더를 이용한 고해상도 레벨게이지)

  • Eum, Soung-Hyun;Oh, Woo-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.899-905
    • /
    • 2012
  • Level Gauge using FMCW Radar is widely used and researched in many areas because of contactless, long range and flexibility. However FMCW level gauge requires wideband RF bandwidth for archiving high resolution of cm grade. In this paper we propose a new tx sawtooth waveform and processing algorithm with narrowband RF for wideband performance. The proposed method is based on STFT(Short-time fourier transform) and single sinusoidal carrier estimation method. From some experiments, we show that the resolution is improved upto 8 times with 300MHz FMCW radar.

A Study of Fuel Gauge System Matching Method Using Characteristic Chart to Fuel Consumption Ratio in Vehicles (특성 선도를 이용한 자동차용 연료 지침계의 연료 소비율에 따른 시스템 제어 방법에 관한 연구)

  • Lee, Seon-Bong;Lee, Boo-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.194-201
    • /
    • 2008
  • In the present study, fuel system matching was analyzed, and a characteristic chart for common use for design-related parts is presented. Based on the characteristic chart thus presented, controlled fuel system matching was tested for a 35-liter fuel system, and actual mass product movement coils were applied to validate the test. The keynote of the present research is the use of the characteristic chart to devise a preferred fuel system matching method. Through the present study, it will be possible to design standard parts for efficient fuel system matching in the near future.

Optimal layout of long-gauge sensors for deformation distribution identification

  • Zhang, Qingqing;Xia, Qi;Zhang, Jian;Wu, Zhishen
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.389-403
    • /
    • 2016
  • Structural deflection can be identified from measured strains from long gague sensors, but the sensor layout scheme greatly influences on the accuracy of identified resutls. To determine the optimal sensor layout scheme for accurate deflection identification of the tied arch bridge, the method of optimal layout of long-gauge fiber optic sensors is studied, in which the characteristic curve is first developed by using the bending macro-strain curve under multiple target load conditions, then optimal sensor layout scheme with different number of sensors are determined. A tied arch bridge is studied as an example to verify the effectiveness and robustness of the proposed method for static and dynamic deflection identification.

Optimal design of dual magnetic float type level gauge to detect a specific level (특정 레벨을 검출하기 위한 2단 Magnetic Float 타입 레벨 게이지의 최적 설계에 관한 연구)

  • Kim, Dong-Sok;Han, Jae-Man;Park, Gwan-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.308-316
    • /
    • 2008
  • For the measurement of liquid level in ship's cargo tank, ballast tank, fuel oil tank and fresh water tank, several types of gauge meter are used such as tubular type, magnetic float type, reflex type transparent type and welding pad type. Among them, magnetic float type gauge meter is environmental friendly device because it is free of power source and maintenance. The main obstacle of the device is relatively large error bound. In this paper, finite element method is used to design and analysis of the magnetic float type gauge meter. The operation of reed switch according to the magnetic field has been successfully described and agreed well with experimental measurement. The optimum geometry with combination of permanent magnet and reed switches are designed to achieve 98 % accuracy of fluid level.

A Study on the Improvement in Local Gauge Correction Method (국지 우량계 보정 방법의 개선에 관한 연구)

  • Kim, Kwang-Ho;Kim, Min-Seong;Seo, Seong-Woon;Kim, Park-Sa;Kang, Dong-Hwan;Kwon, Byung-Hyuk
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.525-540
    • /
    • 2015
  • Spatial distribution of precipitation has been estimated based on the local gauge correction (LGC) with a fixed inverse distance weighting (IDW), which is not optimized in taking effective radius into account depending on the radar error. We developed an algorithm, improved local gauge correction (ILGC) which eliminates outlier in radar rainrate errors and optimize distance power for IDW. ILGC was statistically examined the hourly cumulated precipitation from weather for the heavy rain events. Adjusted radar rainfall from ILGC is improved to 50% compared with unadjusted radar rainfall. The accuracy of ILGC is higher to 7% than that of LGC, which resulted from a positive effect of the optimal algorithm on the adjustment of quantitative precipitation estimation from weather radar.

Method for Analysis on Optimization of Averaging Interval of Rainfall Rate Measured by Tipping-Bucket Rain Gauges

  • Nam, Kyung-Yeub;Chang, Ki-Ho;Kim, Kyung-Eak;Oh, Sung-Nam;Choi, Young-Jean;Kim, Kyung-Sik;Lee, Dong-In;Kim, Kum-Lan
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • Rainfall data from three different types of rain gauge system have been collected for the summertime rain event at Mokpo in the Korean peninsula. The rain gauge system considered in this paper is composed of three tipping-bucket rain gauges with 0.1, 0.2, and 0.5 mm measuring resolutions, the Optical Rain Gauge (ORG), and the PARSIVEL (PARticle SIze and VELocity). The PARSIVEL rainfall rate has been considered as the reference for comparison since it gave good resolution and performance on this event. Comparison with the PARSIVEL rainfall rate gives the results that the error and temporal variation of rainfall rate are simultaneously reduced with increasing the averaging interval of rainfall rate or decreasing the size of tipping bucket. This suggests that the estimated rainfall rate must be optimized, differently for the type of tipping-bucket rain gages, by minimizing the averaging interval of rainfall rate under the condition satisfying the given performance of rainfall rate.