DOI QR코드

DOI QR Code

Method for Analysis on Optimization of Averaging Interval of Rainfall Rate Measured by Tipping-Bucket Rain Gauges

  • Nam, Kyung-Yeub (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Chang, Ki-Ho (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Kim, Kyung-Eak (Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Oh, Sung-Nam (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Choi, Young-Jean (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Kim, Kyung-Sik (Department of Physics, Pukyong National University) ;
  • Lee, Dong-In (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kim, Kum-Lan (National Institute of Meteorological Research, Korea Meteorological Administration)
  • Published : 2008.02.28

Abstract

Rainfall data from three different types of rain gauge system have been collected for the summertime rain event at Mokpo in the Korean peninsula. The rain gauge system considered in this paper is composed of three tipping-bucket rain gauges with 0.1, 0.2, and 0.5 mm measuring resolutions, the Optical Rain Gauge (ORG), and the PARSIVEL (PARticle SIze and VELocity). The PARSIVEL rainfall rate has been considered as the reference for comparison since it gave good resolution and performance on this event. Comparison with the PARSIVEL rainfall rate gives the results that the error and temporal variation of rainfall rate are simultaneously reduced with increasing the averaging interval of rainfall rate or decreasing the size of tipping bucket. This suggests that the estimated rainfall rate must be optimized, differently for the type of tipping-bucket rain gages, by minimizing the averaging interval of rainfall rate under the condition satisfying the given performance of rainfall rate.

Keywords

References

  1. Andsager, K., K. V. Beard, and N. F. Laird, 1999. Laboratory measurements of the axis ratios for large raindrops, J. Atmos. Sci., 56: 2673- 2683. https://doi.org/10.1175/1520-0469(1999)056<2673:LMOARF>2.0.CO;2
  2. Emad, H. and Witold F. K., 2001. Estimation of Rainfall Interstation Correlation, J. Hydrometeo, 2: 621-629. https://doi.org/10.1175/1525-7541(2001)002<0621:EORIC>2.0.CO;2
  3. Joss, J. and A. Waldvogal, 1969. Raindrop size distribution and sampling size errors, J. Atmos. Sci., 26: 566-569. https://doi.org/10.1175/1520-0469(1969)026<0566:RSDASS>2.0.CO;2
  4. L$\"{o}$ffler-Mang, M. and J. Joss, 2000. An optical disdrometer for measuring size and velocity of hydrometeors, J. Atmos. Ocean. Tech., 17: 130-139. https://doi.org/10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2
  5. L$\"{o}$ffler-Mang M. and U. Blahak, 2001. Estimation of the equivalent radar reflectivity factor from measured snow size spectra, J. Appl. Meteor., 40: 843-849. https://doi.org/10.1175/1520-0450(2001)040<0843:EOTERR>2.0.CO;2
  6. Nysteun, J. A., P. G. Black, and J. C. Wilkerson, 1996. A comparison of automatic rain gauges, J. Atmos. Ocean. Tech., 13: 62-73. https://doi.org/10.1175/1520-0426(1996)013<0062:ACOARG>2.0.CO;2
  7. Nysteun, J. A., 1998. Temporal sampling requirements for automatic rain gauges, J. Atmos. Ocean. Tech., 15: 1253-1260. https://doi.org/10.1175/1520-0426(1998)015<1253:TSRFAR>2.0.CO;2
  8. Nysteun, J. A., 1999. Relative performance of automatic rain gauges under different rainfall conditions, J. Atmos. Ocean. Tech., 16: 1025- 1043. https://doi.org/10.1175/1520-0426(1999)016<1025:RPOARG>2.0.CO;2
  9. Pikounis, M., E. Baltas, and M. Mimikou, 2002. Temporal sampling and bucket volume effects on tipping bucket measuring accuracy, J. Meteor., 27: 335-348.
  10. Smith, P. L., Z. Liu, and J. Joss, 1993. A study of sampling-variability effects in raindrop size observations, J. Appl. Meteor., 32: 1259- 1269. https://doi.org/10.1175/1520-0450(1993)032<1259:ASOSVE>2.0.CO;2
  11. Waldvogel, A., 1974. The No jump in raindrop spectra, J. Atmos. Sci., 31: 1067-1078. https://doi.org/10.1175/1520-0469(1974)031<1067:TJORS>2.0.CO;2
  12. Wang, T. I. and S. F. Clifford, 1975. Use of rainfallinduced optical scintillations to measure pathaveraged rain parameters, J. Opt. Soc. Amer., 65: 927-937. https://doi.org/10.1364/JOSA.65.000927
  13. Wang, T. I., K. B. Earnshaw, and R. S. Lawrence, 1978. Simplified optical path-averaged rain gauge, Appl. Opt., 17: 384-390. https://doi.org/10.1364/AO.17.000384
  14. Wang, T. I., G. Lerfald, R. S. Lawrence, and S. F. Clifford, 1977. Measurement of rain parameters by optical scintillation, Appl. Opt., 16: 2236-2241. https://doi.org/10.1364/AO.16.002236