• Title/Summary/Keyword: Gate turbine

Search Result 29, Processing Time 0.026 seconds

Parametric Study of a Fixed-blade Runner in an Ultra-low-head Gate Turbine

  • Mohamed Murshid Shamsuddeen;Duc Anh Nguyen;Jin-Hyuk Kim
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.116-125
    • /
    • 2024
  • Ultra-low-head is an unexplored classification among the sites in which hydroelectric power can be produced. This is typically owing to the low power output and the economic value of the turbines available in this segment. A turbine capable of operating in an ultra-low-head condition without the need of a dam to produce electricity is developed in this study. A gate structure installed at a shallow water channel acting as a weir generates artificial head for the turbine mounted on the gate to produce power. The turbine and generator are designed to be compact and submersible for an efficient and silent operation. The gate angle is adjustable to operate the turbine at varying flow rates. The turbine is designed and tested using computational fluid dynamics tools prior to manufacturing and experimental studies. A parametric study of the runner blade parameters is conducted to obtain the most efficient blade design with minimal hydraulic losses. These parameters include the runner stagger and runner leading edge flow angles. The selected runner design showed improved hydraulic characteristics of the turbine to operate in an ultra-low-head site with minimal losses.

Ocean Current Power Generation using sea water discharged from Turbine Generator and Gate Channel of Tidal Power Plant (조력발전소의 수차발전기 및 수문도수로 방출수를 이용한 해류발전)

  • Jang, Kyung-Soo;Lee, Jung-Eun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.180-183
    • /
    • 2008
  • This paper is about the ocean current power generation using sea water incoming into the lake surrounded by barrages and sea water discharged from a dam made of artificial structures. In operation of a tidal power plant, the sea water discharged from a turbine structure and a gate structure of a tidal power plant is faster than the tidal current caused by tides in nature and has better characteristics than that to run ocean current turbines. It is shown that the sea water discharged after generating electricity through a turbine generator of a tidal power plant and the sea water discharged from a gate structure of a tidal dam still have kinetic energy high enough to run an ocean current turbine and produce valuable electricity.

  • PDF

Effect of tidal current turbine using the discharge gate of Siwha tidal power plant on the tidal power generating (시화조력발전소 방류 수문을 활용한 조류발전이 조력발전에 미치는 영향)

  • Kim, Youngjoon;Kim, Yongyeol;Cho, Yong;Ko, Jaemyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.236.2-236.2
    • /
    • 2010
  • The tidal current power is the power plant by installing the turbine or rotor where the tidal speed is fast. This system converting the horizontal movement to rotating energy. Tidal power turbine is needed for the dam to utilize the pressure difference. However, tidal current power using the only flow. The tidal current power was evaluated as the impact on the marine environment surrounding was less and the development of eco-friendly way. In this article, we calculated the effect of tidal current turbine on the tidal power generating by mean of CFD. With these calculated results, we checked the possibility of tidal current power using tidal power plant the discharge gate.

  • PDF

Studies on the flow stabilization around the turbine suction with utilizing the surface water overflow at small-hydraulic power plant (표층수의 월류를 통한 소수력빌전소 수차터빈측의 유동안정화 연구)

  • Lee, Sungmyung;Kim, Cheolhan;Yoo, Gunjong;Kim, Wonseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.165.2-165.2
    • /
    • 2011
  • Flow with suction to water turbine must be in stable state at small hydraulic power plant. But because of water level fluctuation and water gate effect according to irregular supply of cooling water, it would happen to produce bubble and vortex and finally lead to problems in power-plant system. With utilizing the concept design of double size gate, surface water overflowed the overhead of gate for stable flow at suction. We developed the overflow condition and analyzed the design factor with existed one such as water level(overflow amount) and overhead of water gate(overflow figure). Flow test and CFD simulation say that flow have stable state around suction and 20% of wave reduction effect at surface layer after surface water overflow.

  • PDF

Simulation model for Francis and Reversible Pump Turbines

  • Nielsen, Torbjorn K.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.169-182
    • /
    • 2015
  • When simulating the dynamic behaviour of a hydro power plant, it is essential to have a good representation of the turbine behaviour. The pressure transients in the system occurs because the flow changes, which the turbine defines. The flow through the turbine is a function of the pressure, the speed of rotation and the wicket gate opening and is, most often described in a performance diagram or Hill diagram. In the Hill diagram, the efficiency is drawn like contour lines, hence the name. A turbines Hill diagram is obtained by performance tests on scaled model in a laboratory. However, system dynamic simulations have to be performed in the early stage of a project, before the turbine manufacturer has been chosen and the Hill diagram is known. Therefore one have to rely on diagrams for a turbine with similar speed number. The Hill diagram is drawn through measured points, so for using the diagram in a simulation program, one have to iterate in the diagram based on curve fitting of the measured points. This paper describes an alternative method. By means of the Euler turbine equation, it is possible to set up two differential equations which represents the turbine performance with good enough accuracy for the dynamic simulations. The only input is the turbine's main geometry, the runner blade in- and outlet angle and the guide vane angle at best efficiency point of operation (BEP). In the paper, simulated turbine characteristics for a high head Francis turbine, and for a reversible pump turbine are compared with laboratory measured characteristics.

Performance Analysis of Gas Turbine for Large-Scale IGCC Power Plant

  • Joo, Yong-Jin;Kim, Mi-Yeong;Park, Se-Ik;Seo, Dong-Kyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.415-419
    • /
    • 2016
  • As the need for clean coal technology has grown, so has the global research and development efforts into integrated gasification combined cycle (IGCC) plants. An IGCC plant couples a gas turbine to a gasification block. Various technical and economic problems exist in designing such a system. One such problem is the difficulty in realizing economies of scale because the single-train flow capacity of commercial IGCC synthetic gas turbine plants is limited; the capacity does not exceed a net power rating of 300 MW. To address this problem, this study modeled and simulated a synthetic gas turbine with the goal of evaluating the feasibility of a 500 MW or larger IGCC plant. First, a gas turbine with the best output and efficiency was chosen for use with natural gas. The turbine was modeled using GateCycle (a simulation tool), and the integrity of the model validated by comparing the result to the design value. Next, off-design modeling was carried out for a gas turbine with synthetic gas based on its on-design model, and the result was compared with the study result of the gas turbine manufacturer. The simulation confirmed that it is possible to create a large capacity IGCC plant by undertaking the remodeling of a gas turbine designed to use natural gas into one suitable for synthetic gas.

A Performance prediction of Gas Turbine using syngas fuel in IGCC (가스화복합발전에서 Syngas 연료를 사용하는 가스터빈의 성능예측)

  • Seo, Seok-Bin;Kim, Jong-Jin;Chung, Jae-Hwa;Ahn, Dal-Hong
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.878-884
    • /
    • 2001
  • IGCC(Integrated Gasification Combined Cycle) power plant are becoming more attractive because of fuel flexibility and low emission. In this study, performances are evaluated when the low caloric value syngas fuels producted in gasification process is used a gas turbine originally designed naturel gas fuel. Using GateCycle computational thermal analysis model, performances of GE 7FA gas turbine are predicted for using four types of syngas. Also, off design performance is presented for firing syngas fuel in the gas turbine.

  • PDF

Performance Evaluation of the Gas Turbine for Integrated Ossification Combined Cycle (석탄가스화 복합발전용 가스터빈의 성능 평가)

  • Lee, Chan;Lee, Jin-Wook;Yun, Yong-Seung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.7-14
    • /
    • 1999
  • This simulation method is developed by using GateCycle code for the performance evaluation of the gas turbine in IGCC(Integrated Gasification Combined Cycle) power plant that uses clean coal gas fuel derived from coal gasification and gas clean-up processes and it is integrated with ASU(Air Separation Unit). In the present simulation method, thermodynamic calculation procedure is incorporated with compressor performance map and expander choking models for considering the off-design effects due to coal gas firing and ASU integration. With the clean coal gases produced through commercially available chemical processes, their compatibility as IGCC gas turbine fuel is investigated in the aspects the overall performance of the gas turbine system. The predictions by the present method show that the reduction of the air extraction from gas turbine to ASU results in a remarkable increase in the efficiency and net power of gas turbines, but it is accompanied with a shift of compressor operation point toward to surge limit. In addition, the present analysis results reveal the influence of compressor performance characteristics of gas turbine have to be carefully examined in designing the ASU integration process and evaluating the overall performance parameters of the gas turbine in IGCC Power plant.

  • PDF

Battery Energy Storage System Based Controller for a Wind Turbine Driven Isolated Asynchronous Generator

  • Singh, Bhim;Kasal, Gaurav Kumar
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.81-90
    • /
    • 2008
  • This paper presents an investigation of a voltage and frequency controller for an isolated asynchronous generator (IAG) driven. by a wind turbine and supplying 3-phase 4-wire loads to the isolated areas where a grid is not accessible. The control strategy is based on the indirect current control of the VSC (voltage source converter) using the frequency PI controller. The proposed controller consists of three single-phase IGBT (Insulated Gate Bipolar Junction Transistor) based VSC, which are connected to each phase of the IAG through three single phase transformers and a battery at their DC link. The controller has the capability of controlling reactive and active powers to regulate the magnitude and frequency of the generated voltage, harmonic elimination, load balancing and neutral current compensation. The proposed isolated system is modeled and simulated in MATLAB using Simulink and PSB (Power System Block-set) toolboxes to verify the performance of the controller.

Structural Anaysis of High Pressure Steam Turbine Casings for Power Plants Using the BEM and the FEM (경계요소법과 유한요소법을 이용한 발전용 고압 증기터빈 케이싱의 구조해석)

  • 조종래
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.609-616
    • /
    • 1998
  • Structural analyses are preformed for the high pressure steam turbine casings of the nuclear and the fossil power plants. An axisymmetric boundary element program for analysis of the casings is developed and applied in the process of practical structural design. To show the useful-ness and accuracy of the developed program results of the analysis are compared with those of the finite element analysis under hydrostatic test pressure, To check the validity of the axisymmetric numerical analysis of the casings the stresses resulting from the hydrostatic test pressure are measured using the strain gate. The results of the numerical analyses are compared and discussed with those of the experiments.

  • PDF