• Title/Summary/Keyword: Gate drive circuit

Search Result 94, Processing Time 0.029 seconds

Study on High Efficiency Boosting-up Circuit for Renewable Energy Application (신재생에너지용 연계형 인버터의 고효율 승압에 관한 연구)

  • Jung, Tae-Uk;Kim, Ju-Yong;Choi, Se-Kwon;Cho, Jun-Seok;Kho, Hee-Seok
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.336-339
    • /
    • 2009
  • In this paper, such as battery power or solar energy and fuel cells generated from Renewable energy sources, high voltage to low voltage DC-DC Converter for converting the design of the study. System consists of low voltage ($24{\sim}28$ [VDC]) and Boosts the voltage (270 [VDC]) for a 3 [kW] DC-DC converter and control circuit is configured as, Power switch the ST Tomson's Automotive low voltage high current MOSFET switches STE250NS10S (temperature 250A) was applied to the two parallel. Also, Controller's processor used ATMEGA128, and Gate Drive applies and composed Photo Coupler TLP250. development. Input voltage (24V) and output voltage (270V) for Conversion in the H-bridge converter topology of the circuit output side power and voltage to control the implementation of the Phase shift angle control applied. And, 3kW of power to pass appropriate specification of the secondary side as interpreted by the high frequency transformer, and the experimental production and analysis of the experiment

  • PDF

Prediction of Iron Loss Resistance by Using HILS System (HILS 시스템을 통한 IPMSM의 철손저항 추정)

  • Jeong, Kiyun;Kang, Raecheong;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • This paper presents the d-q axis equivalent circuit model of an interior permanent magnet (IPM) which includes the iron loss resistance. The model is implemented to be able to run in real-time on the FPGA-based HIL simulator. Power electronic devices are removed from the motor control unit (MCU) and a separated controller is interfaced with the real-time simulated motor drive through a set of proper inputs and outputs. The inputs signals of the HIL simulation are the gate driver signals generated from the controller, and the outputs are the winding currents and resolver signals. This paper especially presents iron loss prediction which is introduced by means of comparing the torque calculated from d-q axis currents and the desired torque; and minimizing the torque difference. This prediction method has stable prediction algorithm to reduce torque difference at specific speed and load. Simulation results demonstrate the feasibility and effectiveness of the proposed methods.

Dickson Charge Pump with Gate Drive Enhancement and Area Saving

  • Lin, Hesheng;Chan, Wing Chun;Lee, Wai Kwong;Chen, Zhirong;Zhang, Min
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1209-1217
    • /
    • 2016
  • This paper presents a novel charge pump scheme that combines the advantages of Fibonacci and Dickson charge pumps to obtain 30 V voltage for display driver integrated circuit application. This design only requires four external capacitors, which is suitable for a small-package application, such as smart card displays. High-amplitude (<6.6 V) clocks are produced to enhance the gate drive of a Dickson charge pump and improve the system's current drivability by using a voltage-doubler charge pump with a pulse skip regulator. This regulation engages many middle-voltage devices, and approximately 30% of chip size is saved. Further optimization of flying capacitors tends to decrease the total chip size by 2.1%. A precise and simple model for a one-stage Fibonacci charge pump with current load is also proposed for further efficiency optimization. In a practical design, its voltage error is within 0.12% for 1 mA of current load, and it maintains a 2.83% error even for 10 mA of current load. This charge pump is fabricated through a 0.11 μm 1.5 V/6 V/32 V process, and two regulators, namely, a pulse skip one and a linear one, are operated to maintain the output of the charge pump at 30 V. The performances of the two regulators in terms of ripple, efficiency, line regulation, and load regulation are investigated.

A New High-Efficiency CMOS Darlington-Pair Type Bridge Rectifier for Driving RFID Tag Chips (RFID 태그 칩 구동을 위한 새로운 고효율 CMOS 달링턴쌍형 브리지 정류기)

  • Park, Kwang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1789-1796
    • /
    • 2012
  • In this paper, a new high-efficiency CMOS bridge rectifier for driving RFID tag chips is designed and analyzed. The input stage of the proposed rectifier is designed as a cascade structure connected with two NMOSs for reducing the gate capacitance by circuitry method, which is the main path of the leakage current that is increased when the operating frequency is increased. This gate capacitance reduction technique using the cascade input stage for reducing the gate leakage current is presented theoretically. The output characteristics of the proposed rectifier are derived analytically using its high frequency small-signal equivalent circuit. For the general load resistance of $50K{\Omega}$, the proposed rectifier shows better power conversion efficiencies of 28.9% for 915MHz UHF (for ISO 18000 -6) and 15.3% for 2.45GHz microwave (for ISO 18000-4) than those of 26.3% and 26.8% for 915MHz, and 13.2% and 12.6% for 2.45GHz of compared other two existing rectifiers. Therefore, the proposed rectifier may be used as a general purpose rectifier to drive tag chips for various RFID systems.

The New Smart Power Modules for up to 1kW Motor Drive Application

  • Kwon, Tae-Sung;Yong, Sung-Il
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.464-471
    • /
    • 2009
  • This paper introduces a new Motion-$SPM^{TM}$ (Smart Power Modules) module in Single In-line Package (SIP), which is a fully optimized intelligent integrated IGBT inverter module for up to 1kW low power motor drive applications. This module offers a sophisticated, integrated solution and tremendous design flexibility. It also takes advantage of pliability for the arrangement of heat-sink due to two types of lead forms. It comes to be realized by employing non-punch-through (NPT) IGBT with a fast recovery diode and highly integrated building block, which features built-in HVICs and a gate driver that offers more simplicity and compactness leading to reduced costs and high reliability of the entire system. This module also provides technical advantages such as the optimized cost effective thermal performances through IMS (Insulated Metal Substrate), the high latch immunity. This paper provides an overall description of the Motion-$SPM^{TM}$ in SIP as well as actual application issues such as electrical characteristics, thermal performance, circuit configurations and power ratings.

A New Topology of Multilevel Voltage Source Inverter to Minimize the Number of Circuit Devices and Maximize the Number of Output Voltage Levels

  • Ajami, Ali;Mokhberdoran, Ataollah;Oskuee, Mohammad Reza Jannati
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1328-1336
    • /
    • 2013
  • Nowadays multilevel inverters are developing generally due to reduced voltage stress on power switches and low total harmonic distortion (THD) in output voltage. However, for increasing the output voltage levels the number of circuit devices are increased and it results in increasing the cost of converter. In this paper, a novel multilevel inverter is proposed. The suggested topology uses less number of power switches and related gate drive circuits to generate the same level in output voltage with comparison to traditional cascaded multilevel inverter. With the proposed topology all levels in output voltage can be realized. As an illustration, a symmetric 13-level and asymmetric 29-level proposed inverters have been simulated and implemented. The total peak inverse (PIV) and power losses of presented inverter are calculated and compared with conventional cascaded multilevel inverter. The presented analyses show that the power losses in the suggested multilevel inverter are less than the traditional inverters. Presented simulation and experimental results demonstrate the feasibility and applicability of the proposed inverter to obtain the maximum number of levels with less number of switches.

Configurations of High Power VSI Drives for Traction Applications Using Multi Level Inverters and Multi Phase Induction Motors (멀티레벨 인버터와 다상 유도기를 이용한 견인기용 대전력 VSI의 구조와 특성)

  • Gopakumnr, K.;Ryu, Hong-Je;Kim, Jong-Su;Im, Geun-Hui
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.500-504
    • /
    • 1997
  • Current source inverter drives of auto sequentially commutated type are very popular in high power applications, because of simple power circuit configuration with four quadrant operation. But the six-step current output create harmonic problems and the input power factor of such a drive is not always good. In this respect pulse width modulated drives using gate turn off thyristors ( GTO ) are finding application, especially in traction drives. However the switching and snubber loses of a GTO do not permit the inverter switching frequency go beyond a few hundred hertz.This will again introduce low frequency harmonic problems. Multi level inverters of the 3-level and 5-level can be considered as an alternative to overcome the low switching frequency harmonic problem of the 2-level GTO inverters. But with multi level inverters the complexity of the power circuit increases. In this paper a combination of multi level ( 2-level and 3-level ) inverters and multi phase induction motor ( 3-phase and 6-phase) configurations are presented for high power VSI drives for traction applications with reduced inverter switching frequency requirements coupled with reduced voltage rating for the power switch.

  • PDF

Sensorless Sine-Wave Controller IC for PM Brushless Motor Employing Automatic Lead-Angle Compensation

  • Kim, Minki;Heo, Sewan;Oh, Jimin;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1165-1175
    • /
    • 2015
  • This paper presents an advanced sensorless permanent magnet (PM) brushless motor controller integrated circuit (IC) employing an automatic lead-angle compensator. The proposed IC is composed of not only a sensorless sine-wave motor controller but also an isolated gate-driver and current self-sensing circuit. The fabricated IC operates in sensorless mode using a position estimator based on a sliding mode observer and an open-loop start-up. For high efficiency PM brushless motor driving, an automatic lead-angle control algorithm is employed, which improves the efficiency of a PM brushless motor system by tracking the minimum copper loss under various load and speed conditions. The fabricated IC is evaluated experimentally using a commercial 200 W PM brushless motor and power switches. The proposed IC is successfully operated without any additional sensors, and the proposed algorithm maintains the minimum current and maximum system efficiency under $0N{\cdot}m$ to $0.8N{\cdot}m$ load conditions. The proposed IC is a feasible sensorless speed controller for various applications with a wide range of load and speed conditions.

Design for reduction EMI of flyback switching power supply

  • Theirakul, Chaivat;Prempraneerach, Yothin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1891-1895
    • /
    • 2003
  • Switch-mode power supplies (SMPS) have become a major source of conducted electromagnetic interference (EMI) which is the combination between differential mode (DM) noise and common mode (CM) noise. This paper presents the conducted EMI reduction approach in flyback switched mode power supply by rerouting for circuit balance to reduce common mode noise. And differential mode noise can be reduce by adding $c_x$ capacitor across the input power line, and passive element to the gate drive of switching device MOSFET to slow down the switching times. This combination of our approach is the effective way to reduce the conducted EMI and it is also a cost effective for product design

  • PDF

Device Characteristic and Voltage-Type Inverter Simulation by Power IGBT Micro Modeling (전력용 IGBT의 미시적인 모델링에 의한 소자특성 및 전압형 인버터 시뮬레이션)

  • 서영수;백동현;조문택;이상훈;허종명
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.63-66
    • /
    • 1996
  • An micro model for the power insulated Gate Bipolar Transistor(IGBT) is developed. The model consistently described the IGBT steady-state current-voltage characteristics and switching transient current and voltage waveform for all loading conditions. The model is based on the equivalent circuit of a MOSFET with supplies the base current to a low-gain, high-level injection, bipolar transistor with its base virtual contact at the collector and of the base. Model results are compared with measured turn-on and turn-off waveform for different drive, load, and feedback circuits.

  • PDF